信用卡违约预测模型的开发思路

本文介绍了信用卡违约预测模型的开发过程,包括数据准备、变量筛选、模型构建与评估、业务应用和模型部署监控。在数据处理阶段,涉及缺失值和哑变量处理,以及极值调整。通过逐步回归选择最优变量,构建模型后,利用ROC曲线进行评估,并根据违约概率划分客户风险等级。模型部署后需持续监控以确保稳定性和正确性。
摘要由CSDN通过智能技术生成

                                                           评分模型的数据多维性

       目前以金融业为代表的各行各业使用的评分模型的原型都是基于美国FICO公司开发的评分模型,每个企业会将FICO的模型做些变形,从而形成自己需要的模型。

       一般FICO的评分模型会基于四方面的信息:

  • 样本基本信息
  • 样本业务行为
  • 样本还款行为

  • 样本外部征信数据

      当前,以阿里的蚂蚁分为代表的评分体系还包含社会网络相关的非金融行为的数据。

                                                              信用卡违约预测模型   ---数据准备<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值