人工智能
文章平均质量分 57
啥都鼓捣的小yao
这个作者很懒,什么都没留下…
展开
-
Python机器学习——利用Keras和基础神经网络进行手写数字识别(MNIST数据集)
其中:train_images保存用来训练的图像,train_labels是与之对应的标签。test_images和test_labels分别为用来验证的图像和标签,也就是验证集。对于输出 0-9 这10个标签而言,每个标签的地位应该是相等的,并不存在标签数字2大于数字1的情况。因此,在大部分情况下,都需要将标签转换为 one-hot 编码,也就独热编码,这样标签之间便没有任何大小而言。用 keras 中自带的mnist模块,加载数据集load_data进来,分别赋值给四个变量。每一行的向量代表一个标签。原创 2024-09-09 23:24:11 · 1303 阅读 · 2 评论 -
一篇文章教你掌握——Pytorch深度学习实践基础
Infer 推理;Prediction 预测。原创 2024-07-13 18:01:13 · 965 阅读 · 0 评论 -
Python大数据分析——K近邻模型(KNN)
那么解决方法就是,一种是设置k近邻样本的投票权重,使用KNN算法进行分类或预测时设置的k值比较大,担心模型发生欠拟合的现象,一个简单有效的处理办法就是设置近邻样本的投票权重,如果已知样本距离未知样本比较远,则对应的权重就设置得低一些,否则权重就高一些,通常可以将权重设置为距离的倒数。对于连续型的因变量来说,则是将k个最近的已知样本均值用作未知样本的预测。还有一种方法是,采用多重交叉验证法,该方法是目前比较流行的方案,其核心就是将k取不同的值,然后在每种值下执行m重的交叉验证,最后选出平均误差最小的k值。原创 2024-07-11 21:12:54 · 1112 阅读 · 0 评论 -
我的NVIDIA开发者之旅——利用NVIDIA TAO工具包3.0和Deepstream快速搭建车辆信息识别系统
汽车检测以及车牌信息视频源—— 视频流处理(RTSP/RAW、DECODE)—— 预处理大小、分辨率等(IMAGE PROCESSING)—— 批次处理即几张图片组合到一起进行处理(BATCHING)—— 推理任务(DNN(s))—— 进行更多操作如追踪任务(TRACKING)—— 显示合成(VIZ)—— 输出(DISPLAY/STORAGE/CLOUD)...原创 2022-06-07 15:31:37 · 1134 阅读 · 0 评论 -
OpenCV实战项目——角度测量
OpenCV实战项目——角度测量原创 2022-06-04 21:39:09 · 864 阅读 · 0 评论 -
OpenCV——Python:轮廓和形状检测6
OpenCV基础——Python:轮廓和形状检测原创 2022-06-04 20:38:05 · 942 阅读 · 0 评论 -
OpenCV——Python:图像颜色检测与轨迹栏5
OpenCV——Python:图像颜色检测与轨迹栏原创 2022-06-04 20:35:13 · 460 阅读 · 0 评论 -
OpenCV——Python:图像投影向量与堆叠4
图像投影向量(warping perspective)# 进行图像转换,选取目标并正视import cv2import numpy as npimg = cv2.imread("2.jpg") # 读取图像width, height = 205, 350 # 定义框大小pts1 = np.float32([[111, 219], [287, 188], [154, 482], [352, 440]]) # 可以用电脑的画图,捕捉作标,从而选取作标pts2 = np.float3原创 2022-05-25 15:01:57 · 527 阅读 · 0 评论 -
OpenCV——Python:像素调整、图片裁剪、形状与文字设置3
像素调整与图片裁剪import cv2img = cv2.imread("2.jpg") # 读取图像print(img.shape) # 查看图像长,宽,通道数imgResize = cv2.resize(img, (300, 200)) # 调整图片像素imgCropped = img[0:200, 200:500] # 裁剪图片;先y后x(先高后宽)cv2.imshow("Output1", img)cv2.imshow("Output2", imgResize原创 2022-05-24 21:36:40 · 1196 阅读 · 0 评论 -
OpenCV——Python:图像膨胀与腐蚀设置2
利用opencv进行图像膨胀与腐蚀处理图像import cv2import numpy as npimg = cv2.imread("1.jpg") # 读取图像kernel = np.ones((5, 5), np.uint8) # 定义全为1的矩阵(卷积核),对象类型为8位无符号整型(0~255)imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 对图片进行转换颜色空间imgBlur = cv2.GaussianBlur(imgG原创 2022-05-23 20:39:46 · 459 阅读 · 0 评论 -
OpenCV——Python:基础操作1
内容包括利用python的opencv功能包,调用图像、视频和摄像头import cv2''' 一、读取图像img = cv2.imread("1.jpg") # 读取图像cv2.imshow("Output", img)cv2.waitKey(0) # 设置0代表着无限延迟,1000为1s'''''' 二、读取视频cap = cv2.VideoCapture("1.mp4") # 读取路径视频# 视频需要逐帧浏览每个帧while True: success,原创 2022-05-23 20:05:56 · 253 阅读 · 0 评论 -
统计分析——回归分析
在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。原创 2022-04-27 22:40:28 · 22301 阅读 · 1 评论 -
数据科学分布——Beta分布
Beta分布概念参数影响数量比例随机产生数据概率密度函数累积概率密度函数概念贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,在机器学习和数理统计学中有重要应用。在概率论中,贝塔分布,也称Β分布,是指一组定义在(0,1) 区间的连续概率分布。可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可能性大小。# 加载功能包import numpy as npimport scipy.stats as原创 2022-04-20 16:43:19 · 13595 阅读 · 0 评论 -
数据科学分布——卡方分布
卡方分布概念自由度随机生成概率密度函数累积概率密度函数概念通俗的讲就是通过小数量的样本容量去预估总体容量的分布情况。卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度。若n个相互独立的随机变量ξ₁,ξ₂,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。其中# 加载功能包import numpy as npimport scipy.原创 2022-04-20 14:33:40 · 1799 阅读 · 0 评论 -
数据科学分布——泊松分布
泊松分布概念λ的影响产生随机值概率质量函数累积概率密度函数绘制λ概念Poisson分布,是一种统计与概率学里常见到的离散概率分布。现实生活多数服从泊松分布。泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。泊松分布的期望和方差均为λ特征函数为# 加载功能包import numpy as npimport scipy.stats as statsimport matplotlib.pyplot原创 2022-04-20 12:19:38 · 15852 阅读 · 0 评论 -
数据科学分布——均匀分布
均匀分布概念a与b的影响概念在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。# 加载功能包import numpy as npimport scipy.stats as statsimport matplotlib.pyplot as pltimport matplotlib.style as stylefrom IPython.core.display原创 2022-04-20 13:42:35 · 7392 阅读 · 3 评论 -
数据科学分布——正态分布
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由棣莫弗(Abraham de Moivre)在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。原创 2022-04-17 20:20:52 · 2863 阅读 · 0 评论 -
数据科学分布——二项式分布
概念在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(Binomial Distribution)。N·p表示分布的均值PMF(概率质量函数): 是对 离散随机变量 在各个特定取值的概率. 该函数通俗来说,就是对于一个离散型概率事件来说,使用这个函数来求它的各个成功事件结果的概率.PDF(概率原创 2022-04-19 17:35:25 · 1925 阅读 · 1 评论 -
基于 Python-pygame 的导弹自动追踪代码实现与详细讲解(不考虑弹头,只考虑导弹本身)
基于 Python-pygame 的导弹自动追踪代码实现自动追踪算法,其实就是解微分方程,利用微分的思想,加上一点简单的三角学知识,就可以实现它。算法总的思想就是根据上图,把时间t分割成足够小的片段(比如1/1000,这个时间片越小越精确),每一个片段分别构造如上三角形,计算出导弹下一个时间片走的方向(即∠a)和走的路程(即vt=|AC|),这时候目标再在第二个时间片移动了位置,这时刚才计算的C点又变成了第二个时间片的初始点,这时再在第二个时间片上在C点和新的目标点构造三角形计算新的vt,然后进入第三个转载 2022-03-06 21:34:01 · 883 阅读 · 0 评论 -
基于Google开源 | Python实现手部追踪
利用Google开源手部追踪以下为代码及其讲解import cv2 #导入opencv库import mediapipe as mp #导入Google开源mediapipe库import time #导入时间库cap = cv2.VideoCapture(0) #调用视频流(摄像头或视频文件)mpHands = mp.solutions.handshands = mpHands.Hands() #选择的模型(手部侦测和手部追踪)mpDraw = mp.solutions.drawing_原创 2021-12-27 21:51:57 · 2081 阅读 · 0 评论