【模板】多项式多点求值

题目

题目描述
给定一个 nn 次多项式 f(x)f(x) ,现在请你对于 i \in [1,m]i∈[1,m] ,求出 f(a_i)f(a
i

) 。

输入格式
第一行两个正整数 n,mn,m 表示多项式的次数及你要求的点值的数量。

第二行 n+1n+1 个非负整数,由低到高地给出多项式的系数。

第三行 mm 个非负整数,表示 a_ia
i

输出格式
一共 mm行,每行 11 个非负整数。

第 ii 行的数字表示 f(a_i)f(a
i

) 。

答案对 998244353998244353 取模。

输入输出样例
输入 #1复制
10 10
18 2 6 17 7 19 17 6 2 12 14
4 15 5 20 2 6 20 12 16 5
输出 #1复制
18147258
804760733
161737928
73381527
23750
973451550
73381527
525589927
842520242
161737928
说明/提示
n,m \in [1,64000]n,m∈[1,64000],a_i,[x^i]f(x) \in [0,998244352]a
i

,[x
i
]f(x)∈[0,998244352] 。

[x^i]f(x)[x
i
]f(x) 表示 f(x)f(x) 的 ii 次项系数。

思路

这辈子再也不想看到多项式

代码

#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
const int N=(1<<17)+5,P=998244353;
int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
    R int res=1;
    for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
    return res;
}
int r[19][N],w[2][N],lg[N],inv[19];
void Pre(){
    fp(d,1,17){
        fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
        lg[1<<d]=d,inv[d]=ksm(1<<d,P-2);
    }
    for(R int t=(P-1)>>1,i=1,x,y;i<131072;i<<=1,t>>=1){
        x=ksm(3,t),y=ksm(332748118,t),w[0][i]=w[1][i]=1;
        fp(k,1,i-1)
            w[1][k+i]=mul(w[1][k+i-1],x),
            w[0][k+i]=mul(w[0][k+i-1],y);
    }
}
int lim,d,n,m;
void init(R int len){lim=1,d=0;while(lim<len)lim<<=1,++d;}
void NTT(int *A,int ty){
    fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
    for(R int mid=1;mid<lim;mid<<=1)
        for(R int j=0,t;j<lim;j+=(mid<<1))
            fp(k,0,mid-1)
                A[j+k+mid]=dec(A[j+k],t=mul(w[ty][mid+k],A[j+k+mid])),
                A[j+k]=add(A[j+k],t);
    if(!ty)fp(i,0,lim-1)A[i]=mul(A[i],inv[d]);
}
void Inv(int *a,int *b,int len){
    if(len==1)return b[0]=ksm(a[0],P-2),void();
    Inv(a,b,len>>1),lim=(len<<1),d=lg[lim];
    static int A[N],B[N];
    fp(i,0,len-1)A[i]=a[i],B[i]=b[i];fp(i,len,lim-1)A[i]=B[i]=0;
    NTT(A,1),NTT(B,1);
    fp(i,0,lim-1)A[i]=mul(A[i],mul(B[i],B[i]));
    NTT(A,0);
    fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),A[i]);
    fp(i,len,lim-1)b[i]=0;
}
struct node{
    node *lc,*rc;vector<int>vec;int deg;
    void Mod(const int *a,int *r,int n){
        static int A[N],B[N],D[N];
        int len=1;while(len<=n-deg)len<<=1;
        fp(i,0,n)A[i]=a[n-i];fp(i,0,deg)B[i]=vec[deg-i];
        fp(i,n-deg+1,len-1)B[i]=0;
        Inv(B,D,len);
        lim=(len<<1),d=lg[lim];
        fp(i,n-deg+1,lim-1)A[i]=D[i]=0;
        NTT(A,1),NTT(D,1);
        fp(i,0,lim-1)A[i]=mul(A[i],D[i]);
        NTT(A,0);
        reverse(A,A+n-deg+1);
        init(n+1);
        fp(i,n-deg+1,lim-1)A[i]=0;
        fp(i,0,deg)B[i]=vec[i];fp(i,deg+1,lim-1)B[i]=0;
        NTT(A,1),NTT(B,1);
        fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
        NTT(A,0);
        fp(i,0,deg-1)r[i]=dec(a[i],A[i]);
    }
    void Mul(){
        static int A[N],B[N];deg=lc->deg+rc->deg,vec.resize(deg+1),init(deg+1);
        fp(i,0,lc->deg)A[i]=lc->vec[i];fp(i,lc->deg+1,lim-1)A[i]=0;
        fp(i,0,rc->deg)B[i]=rc->vec[i];fp(i,rc->deg+1,lim-1)B[i]=0;
        NTT(A,1),NTT(B,1);
        fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
        NTT(A,0);
        fp(i,0,deg)vec[i]=A[i];
    }
}pool[N],*rt;
int A[N],a[N],tot;
node* newnode(){return &pool[tot++];}
void solve(node* &p,int l,int r){
    p=newnode();
    if(l==r)return p->deg=1,p->vec.resize(2),p->vec[0]=P-a[l],p->vec[1]=1,void();
    int mid=(l+r)>>1;
    solve(p->lc,l,mid),solve(p->rc,mid+1,r);
    p->Mul();
}
int b[25];
void calc(node* p,int l,int r,const int *A){
    if(r-l<=512){
        fp(i,l,r){
            int x=a[i],c1,c2,c3,c4,now=A[r-l];
            b[0]=1;fp(j,1,16)b[j]=mul(b[j-1],x);
            for(R int j=r-l-1;j-15>=0;j-=16){
                c1=(1ll*now*b[16]+1ll*A[j]*b[15]+1ll*A[j-1]*b[14]+1ll*A[j-2]*b[13])%P,
                c2=(1ll*A[j-3]*b[12]+1ll*A[j-4]*b[11]+1ll*A[j-5]*b[10]+1ll*A[j-6]*b[9])%P,
                c3=(1ll*A[j-7]*b[8]+1ll*A[j-8]*b[7]+1ll*A[j-9]*b[6]+1ll*A[j-10]*b[5])%P,
                c4=(1ll*A[j-11]*b[4]+1ll*A[j-12]*b[3]+1ll*A[j-13]*b[2]+1ll*A[j-14]*b[1])%P,
                now=(0ll+c1+c2+c3+c4+A[j-15])%P;
            }
            fd(j,(r-l)%16-1,0)now=(1ll*now*x+A[j])%P;
            print(now);
        }
        return;
    }
    int mid=(l+r)>>1,b[p->deg+1];
    p->lc->Mod(A,b,p->deg-1),calc(p->lc,l,mid,b);
    p->rc->Mod(A,b,p->deg-1),calc(p->rc,mid+1,r,b);
}
int main(){

    n=read(),m=read();if(!m)return 0;
    Pre();
    fp(i,0,n)A[i]=read();
    fp(i,1,m)a[i]=read();
    solve(rt,1,m);
    if(n>=m)rt->Mod(A,A,n);
    calc(rt,1,m,A);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
比雪夫多项式和雅可比多项式都是常见的正交多项式。其中,切比雪夫多项式是定义在区间[-1,1]上的正交多项式,而雅可比多项式则是定义在区间[-1,1]上的一类正交多项式。两者都在数学和工程学科中有广泛的应用。 关于切比雪夫多项式,可以进一步了解以下内容: - 切比雪夫多项式是一类特殊的多项式,其定义为Tn(x) = cos(n * arccos(x)),其中n为多项式的次数,x为自变量。第一类切比雪夫多项式在数学和物理学中有广泛的应用,例如在逼近论、微分方程、傅里叶级数等领域。 - 切比雪夫多项式的性质包括正交性、归一性、三项递推关系等。其中,正交性是指在区间[-1,1]上,不同次数的切比雪夫多项式之间的内积为0,相同次数的切比雪夫多项式之间的内积为一个常数。 - 切比雪夫多项式的应用包括多项式插值、函数逼近、数值积分等。其中,多项式插值是指利用切比雪夫多项式在给定区间上的节点进行插值,得到一个多项式函数,用于逼近原函数。 关于雅可比多项式,可以进一步了解以下内容: - 雅可比多项式是定义在区间[-1,1]上的一类正交多项式,其定义为P^(α,β)_n(x),其中α和β为两个参数,n为多项式的次数,x为自变量。不同的参数α和β会导致不同的雅可比多项式。 - 雅可比多项式的性质包括正交性、归一性、三项递推关系等。其中,正交性是指在区间[-1,1]上,不同次数的雅可比多项式之间的内积为0,相同次数的雅可比多项式之间的内积为一个常数。 - 雅可比多项式的应用包括多项式插值、函数逼近、数值积分等。其中,多项式插值是指利用雅可比多项式在给定区间上的节点进行插值,得到一个多项式函数,用于逼近原函数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值