Codesforces - #672/D.

Link to Codeforces

Given segment: s[0], s[1], ..., s[k]

If each segment need to have at least one intersection point <=> 

max(l[s[0]], l[s[1]], l[s[2]], ... , l[s[k]]) <= min(r[s[0]], r[s[1]], r[s[2]], ..., r[s[k]]) 

Once assume l[s[0]] <= l[s[1]] <= ... <= l[s[k]]:

max(l[s[0]], l[s[1]], l[s[2]], ... , l[s[k]])  = l[s[k]] <= min(r[s[0]], r[s[1]], r[s[2]], ..., r[s[k]]) 

=> l[s[k]] <= r[s[0] && l[s[k]] <= r[s[1]] && l[s[k]] <= r[s[2]] && ... && l[s[k]] <= r[s[k-1]]

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 998244353;
const int MAXN = 3e5 + 10;
ll Fac[MAXN] = {1};
int Fs = 0;
ll inv[MAXN];

ll qpow(ll base, ll power) {
    ll res = 1;
    while(power) {
        if(power & 1) res = (res * base) % mod;
        base = (base * base) % mod;
        power >>= 1;
    }
    return res % mod;
}

void init() {
    for(int i = 1; i < MAXN; i++) {
        Fac[i] = Fac[i-1] * i % mod;

    }
    inv[MAXN - 1] = qpow(Fac[MAXN-1], mod-2);
    for(int i = MAXN - 2; i >= 0; i--) inv[i] = inv[i+1] * (i+1) % mod;
    cerr<<inv[0]<<'\n';
}

ll Comb(ll n, ll m) {
    if(n < m) return 0;
    if(m < 0) return 0;
    return (((Fac[n]*inv[n-m])%mod)*inv[m])%mod;
}

int main() {
    ios::sync_with_stdio(false);
    cout.tie(0);
    cin.tie(0);
    init();

    int n, k;
    cin>>n>>k;
    vector<int> l(n);
    vector<int> r(n);
    for(int i = 0; i < n; i++) cin>>l[i]>>r[i];
    vector<int> order(n);
    iota(order.begin(), order.end(), 0);
    sort(order.begin(), order.end(), [&](int i, int j) {
        return l[i] < l[j];
    });

    ll ans = 0;
    multiset<int> rs;
    for(int i: order) {
        while (!rs.empty() && *rs.begin() < l[i]) {
            rs.erase(rs.begin());
        }
        int cnt = (int)rs.size();
        // cerr<<cnt<<" "<<k-1<<'\n';
        ans = (ans + Comb(cnt, k-1)) % mod;
        rs.insert(r[i]);
    }
    cout << ans << '\n';
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值