简介
ELK技术:elasticsearch + logstash + kibana
ELK基础
ELK 是什么
ELK 是 Elasticsearch、Logstash、 Kibana 三大开源框架首字母大写简称。其中 Elasticsearch 是一个基于 Lucene、分布式、通过 Restful方式进行交互的近实时搜索平台框架。 像类似百度、谷歌这种大数据全文搜索引擎的场景都可以使用 Elasticsearch 作为底层支持框架。
Logstash 是 ELK 的中央数据流引擎,用于从不同目标(文件/数据存储/MQ )收集的不同格式数据,经过过滤后支持输出到不同目的地(文件/MQ/redis/elasticsearch/kafka等)。
Kibana可以将 elasticsearch 的数据通过友好的页面展示出来 ,提供实时分析的功能。
一般认为 ELK 是一个日志分析架构技术栈总称,但实际上 ELK 不仅仅适用于日志分析,它还可以支持其它任何数据分析和收集的场景。
即 Logstash 收集数据,ES 过滤数据,Kibana 配合展示数据。
Elaticsearch
以前我们查数据查信息,是用的 SQL,然后用的是 like %搜索关键字%,但如果是大数据的场景下,就会很慢,然后我们就会去建立索引以提高查询速度,但是 %搜索关键字%,左侧的 百分号 会使得索引失效。这时候就需要搜索效率较高的分布式的全文搜索引擎 ElasticSearch。ES 也可以来当数据库,但是不建议。
Lucene 是 Doug Cutting 的开源的 Java 全文检索项目,是一个 jar包,引入就可以直接使用。Hadoop 也是 Doug Cutting 的。
Elaticsearch,简称为es,是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时地存储、检索数据,本身扩展性很好,可以扩展到上百台服务器,处理 PB级别(大数据时代)的数据。
ElasticSearch 是基于 Lucene 做了封装和增强,es 也使用 Java 开发并使用 Lucene 作为其核心来实现所有索引和搜索的功能,它的目的是通过简单的 RESTful API 来隐藏 Lucene 的复杂性,让全文搜索变得简单。
Solr 和 ES 对比
简介
ES:全文搜索、结构化搜索、分析。
Solr 也是 Apache下的项目,也是使用 Java 开发的,也是基于 Lucene。
对比
-
单纯对已有的数据进行搜索时,即已经存在于服务器里面了,Solr 更快。
-
当实时建立索引时,ES 快,Solr 会产生 IO阻塞,查询性能较差。
-
随着数据量的增加,Solr 的搜索效率会变低,而 ES 几乎没有明显变化。
总结
-
es 基本是开箱即用,非常简单。Solr安装略微复杂
-
Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能。
-
Solr 支持更多格式的数据,比如 JSON、XML、CSV,而 ES 仅支持 json 文件格式。
-
Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供,例如图形化界面需要 kibana 友好支撑
-
Solr 查询快,但更新索引时慢(即插入、删除慢),用于电商等查询多的应用
-
ES 建立索引快(即查询慢),即实时性查询快,用于 facebook、新浪等搜索。
-
Solr 是传统搜索应用的有力解决方案,但 ES 更适用于新兴的实时搜索应用。
-
-
Solr 比较成熟,有一个更大、更成熟的用户、开发和贡献者社区,而 ES 相对开发维护者较少,更新太快,学习使用成本较高。
3、ES 的下载安装和插件的下载
3.1、ES 下载
官网:Elastic — The Search AI Company | Elastic
进官网下载压缩包即可,
3.1.1、Windows 下安装和启动
解压到指定目录即可使用,
运行 bin/elasticsearch.bat 即可启动
在 bin目录下 cmd,输入 elasticsearch-plugin list,可以查看已加载的插件
3.1.1.1、目录结构
bin 启动文件 config 配置文件 log4j2.properties 日志配置文件 jvm.options 虚拟机需求配置,若内存较小一定要修改 -Xms,比如 -Xms256m elasticsearch.yml es 的配置文件,默认 9200端口,通信地址 9300 lib 相关 jar包 modules 功能模块 plugins 插件,比如把 ik分词器放进去
3.2、插件下载
3.2.1、head
地址:https://github.com/mobz/elasticsearch-head/
下载完之后如果下的是压缩文件就解压到指定目录,然后进入文件夹,进行 cmd。(首先需要 node 环境)
npm install (或 cnpm install) npm run start
3.2.1.1、使用
这个是 ES 的可视化图形界面工具,地址是 9100,但是因为端口不一样,所以访问 9200 会产生跨域问题。
所以需要在 elasticsearch.yml 中进行配置,解决跨域,加上以下这段:
http.cors.enabled: true http.cors.allow-origin: "*"
4、Kibana下载安装
4.1、简介
Kibana是一个针对Elasticsearch的开源分析及 可视化平台,用来搜索、查看交互存储在Elasticsearch索弓 |中的数据。使用Kibana ,
可以通过各种图表进行高级数据分析及展示。Kibana让海 量数据更容易理解。它操作简单,基于浏览器的用户界面可以快速创建仪
表板( dashboard )实时显示Elasticsearch查询动态。设置Kibana非常简单。无需编码或者额外的基础架构,几分钟内就可以完成
Kibana安装并启动Elasticsearch索引监测。
4.2、下载安装
官网:https://www.elasticsearch.co/cn/kibana
下载到压缩包之后解压到指定目录,运行 bin/kibana.bat 即可启动。端口在 5601。
汉化的配置文件在 x-pack\plugins\translations\translations 里面。
使用汉化需要在 config/kibana.yml 的最后加上汉化配置:
i18n.locale: "zh-CN"
5、ES核心概念
5.1、简介
ES 是面向文档的,一切都是 json,
Relation DB(关系型数据库) | ElasticSearch |
---|---|
数据库(database) | 索引(index) |
表(table) | types(已过时) |
行(row) | document |
字段(column) | field |
5.2、设计
-
物理设计:ES 在后台把每个索引划分成多个分片,每片分片可以在集群中的不同服务器间迁移。一个人就是一个集群,默认的集群名称就是 elasticsearch
-
逻辑设计:一个索引类型中可以有多个文档,
5.3、索引、类型、文档
索引就是数据库,
类型就分类,比如食品类,工具类等,
文档就是一条具体数据,文档是 json,是 k:v 形式的,可以是层次型的,
一个集群至少一个节点,一个节点就是一个 es进程,如果创建索引,那么索引将会有 5个分片组成(primary shard,又称主分片)构成,每个主分片会有一个副本(replica shard,又称复制分片)。
主分片对应的复制分片都不会在同一个节点内,作用利于某个节点挂掉后数据不会丢失。
一个分片是一个 Lucene索引,一个包含倒排索引的文件目录。倒排索引的结构使得 ES 在不扫描全部文档的情况下,就能告诉你哪些文档包含特定的关键字。
即一个 ES索引其实底层是由多个 Lucene索引组成的,Lucene 使用倒排索引,就可以不使用 like关键字了,而是使用额外的空间存储倒排索引,即用空间换时间。
5.3.1、倒排索引
ES 使用的结构是倒排索引,采用 Lucene倒排索引作为底层,这种结构适用于全文搜索,一个索引由文档中所有不重复的列表构成,对于每一个词,都有一个包含它的文档列表。
倒排索引是实现“单词-文档矩阵”的一种具体存储形式,通过倒排索引,可以根据单词快速获取包含这个单词的文档列表。倒排索引主要由两个部分组成:“单词词典”和“倒排文件”。
单词-文档矩阵就是一个矩阵,列是文档,行是单词,然后若文档包含此单词,就进行标记。然后根据指定的单词数组进行匹配,匹配程度越高的代表权重越大,在 ES 中就是 _score。
5.4、数据类型
-
字符串类型:text、keyword(text 支持分词,keyword 不支持)
-
数值类型:long、integer、short、byte、double、float、half float、scaled float
-
日期类型:date
-
布尔值类型:boolean
-
二进制类型:binary
6、IK分词器
6.1、简介
分词:即把一段文本划分成一个个关键字,然后进匹配操作,中文的话会默认把每个字都划分成一个词。
IK分词器提供了两个分词算法:ik_smart 和 ik_max_word,其中 ik_smart 是最少划分,ik_max_word 是最细粒度划分。
6.2、下载
官网:https://github.com/medcl/elasticsearch-analysis-ik
下载完毕后解压到 ES文件夹的 plugins文件夹,然后把 ik 这个文件夹的名称改成 ik,名字可以不是 ik,需要自己去查询相应知识。
6.3、kibana 中简单使用分词器
ik_smart 是将一段话打断点划分掉,每个词不会有重复使用的地方,比如:中国共产党。
而 ik_max_word 是举例所有可能,比如:中国共产党,中国,国共,共产党,共产,党。
但有时候可能有想要合并在一起进行查询的词被划分掉了,这时候就需要我们自己把词加入到分词器的字典中。可以创建一个 dic文件放到 elasticsearch-7.6.1\plugins\ik\config\ 目录下,然后再在 IKAnalyzer.cfg.xml 中的 <entry key="ext_stopwords"></entry> 里面将我们新建的文件全名放进去。如果有多个,就写多个 entry。
GET _analyze { "analyzer": "ik_smart", "text": "中国共产党" } GET _analyze { "analyzer": "ik_max_word", "text": "中国共产党" }
7、Rest风格操作
7.1、PUT 创建、更新
// 创建指定索引库指定类型指定文档id 的文档 // 对同一个文档 PUT 不同数据也可以去修改,就是覆盖了, // 但是如果你少写了一个字段,就相当于传了 null 过去,所以推荐使用 _update PUT /index1/type1/1 { "name": "chw", "age": 15 } // 创建指定索引库,设置其规则 PUT /index1 { "mappings": { "properties": { "name": { "type": "text" }, "age": { "type": "long" }, "birthday": { "type": "date" } } } } // 创建指定索引库指定类型指定文档id 的文档 PUT /index2/type1/1 { "name": "chw", "age": 15 } // _doc 就是默认的类型,可以写出来,也可以不写,type 已经过时不用了 // ES 会默认识别数据类型,然后使用最匹配的数据类型 PUT /index3/_doc/1 { "name": "chw", "age": 15, "birthday": "1997-01-05", "tags": ["二刺螈","直男"] }
7.2、GET 查询
// 查询对应索引库的基本信息 GET index2(或者 /index2) // 查询 ES 的信息 GET _cat/health GET _cat/indices?v
7.3、POST 更新
POST /index3/_doc/1/_update { "doc": { "name": "修改后的名字" } }
7.4、DELETE删除
DELETE index1
8、花式查询
GET index3/type1/_search?q=name:chw GET /xxx-dev*/container_log/_search { "query": { "bool": { "must": [ { "range": { "log_time": { "gte": "now-14d/d", "lte": "now-13d/d" } } }, { "match": { "log_level": "INFO" } }, { "query_string": { "default_field": "log", "query": "系统日志 AND 83c401c012e34892a73e13fd6bab88b1.436925.16517091000101945" } } ] } }, "_source": ["log", "log_level", "log_time"], "from": 0, "size": 5, "sort": [ { "log_time": { "order": "asc" } } ] }
8.1、模糊匹配
_score 就是匹配度,匹配度越高,则分值越高。hits是查询结果数组,就是索引和文档的信息,即每一个 {} 就是一个文档。
_source 就是根据 query 的结果来选择想要的字段,过滤结果,就相当于 SQL语句的 SELECT。
sort 就是排序,在里面指定想排序的字段,然后在字段中指定 order 是 desc/asc。
分页就通过 from和size 两个关键字指定,即开始和需要数量。下标从 0 开始。
匹配多个条件就通过空格分隔即可,比如:"tags": "男 技术 旅游",多个条件之间只要能匹配上 1个,就可以被查询出来,匹配程度越高,_score的分值越高。
GET /xxx-dev-202204*/container_log/_search { "query": { "match": { "log": "系统日志" } }, "_source": ["name","age","desc"], "sort": [ { "age": { "order": "asc" } } ], "from": 0, "size": 2 }
bool就是布尔查询,must 可以进行多 match 操作,即多条件查询,and 连接。 如果将 must 改成 should,那就变成了 or 连接。
not 就是 must_not。
可以在 bool 中加过滤器 filter,进行数据过滤。
GET /xxx-dev-202204*/container_log/_search { "query": { "bool": { "must": [ { "match": { "name": "chw" } }, { "match": { "age": "18" } }, ], "filter": { "range": { "age": { "gte": 10, "lte": 20 } } } } } }
8.2、精确匹配
term 查询是直接通过 倒排索引 指定的词条进行精确查找的。效率比 match 高。
match 则会使用 分词器解析,先分析文档,再通过分析过的文档进行查询。
两个类型:text、keyword。text 可以被分词器解析,而 keyword 是不能被分词器解析的。
还可以通过 bool+should 来精确查询多个。
// 先去设置 name 的分词器匹配类型是 keyword,才会变成精确查找,不会被分词器解析 GET /xxx-dev-202204*/container_log/_search { "query": { "term": { "name": "ch" } } } GET /xxx-dev-202204*/container_log/_search { "query": { "bool": { "should": [ { "term": { "name": "c" } }, { "term": { "name": "ch" } }, ] } } }
8.3、高亮查询
查询完之后,加上 highlight 关键字,然后指定字段。它会给你加上 <em>标签,当然可以自定义所加的标签,通过 pre_tags、post_tags 自定义加上的前后缀标签。
GET /xxx-dev-202204*/container_log/_search { "query": { "match": { "name": "ch" } }, "highlight": { "pre_tags": "<p class='key' style='color:red'>", "post_tags": "</p>", "fields": { "name": {} } } }
9、SpringBoot集成ES
9.1、依赖引入
记得要查看版本是否与要连接的 ES 版本一致,否则可能连接不上。
<!-- 非 SpringBoot项目 --> <dependency> <gtoupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> <version>7.6.2</version> </dependency> <properties> <elasticsearch.version>7.6.1</elasticsearch.version> </properties> <dependency> <gtoupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency>
9.2、写一个 config
@Configuration public class ElasticSearchClientConfig { @Bean public RestHighLevelClient restHighLevelClient(){ return new RestHighLevelClient(RestClient.builder( // 集群的话就 new 多个 HttpHost,用 , 分隔。"http" 这个参数可以不加,即允许使用 https new HttpHost("127.0.0.1", 9200, "http") )); } }
9.3、使用 Client
@Autowired private RestHighLevelClient restHighLevelClient; @Override public Page<DocumentResponseVO> listPageMatch(SearchLogVo searchLogVo) { List<DocumentResponseVO> list = new ArrayList<>(); // 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 过滤结果字段 String[] fields = {"log", "log_level", "log_time"}; FetchSourceContext sourceContext = new FetchSourceContext(true, fields, Strings.EMPTY_ARRAY); searchSourceBuilder.fetchSource(sourceContext); BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); // 匹配查询 List<String> collect = new ArrayList<>(); if (ObjectUtil.isNotNull(searchLogVo.getKeyword())) { collect = Lists.newArrayList(searchLogVo.getKeyword()); } if (!collect.contains("系统日志")) { collect.add("系统日志"); } if (!StringUtils.isEmpty(searchLogVo.getTid()) && !collect.contains(searchLogVo.getTid())) { collect.add(searchLogVo.getTid()); } // collect = collect.stream() // .map(it -> "log:\"" + it + "\"") // .collect(Collectors.toList()); String join = Joiner.on(" AND ").join(collect); QueryStringQueryBuilder keywordQueryBuilder = QueryBuilders.queryStringQuery(join); // keywordQueryBuilder.defaultField("*"); keywordQueryBuilder.field("log"); boolQueryBuilder.must(keywordQueryBuilder); // 时间范围条件 RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("@timestamp"); rangeQueryBuilder.gte(searchLogVo.getBeginDate().getTime()); rangeQueryBuilder.lte(searchLogVo.getEndDate().getTime()); /// 时间格式 rangeQueryBuilder.format("epoch_millis"); // rangeQueryBuilder.format("yyyy-MM-dd hh:mm:ss"); boolQueryBuilder.must(rangeQueryBuilder); searchSourceBuilder.query(boolQueryBuilder); // 分页 searchSourceBuilder.from(searchLogVo.getFrom()); searchSourceBuilder.size(searchLogVo.getSize()); // 请求响应时间 searchSourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS)); // 排序 searchSourceBuilder.sort("@timestamp", SortOrder.DESC); // 若以 * 结尾,则根据日期精确索引范围 List<String> dateIndex = new ArrayList<>(); String index = searchLogVo.getIndex(); if (index.endsWith("*")) { DateTime beginDate = new DateTime(searchLogVo.getBeginDate()); beginDate = beginDate.withTime(0, 0, 0, 0); DateTime endDate = new DateTime(searchLogVo.getEndDate()); while (beginDate.isBefore(endDate)) { dateIndex.add(beginDate.toString("yyyyMMdd")); beginDate = beginDate.plusDays(1); } String[] split = index.split("-"); if (split.length == 2) { index = index.substring(0, index.length() - 1); } else if (split.length == 3) { index = index.substring(0, index.lastIndexOf("-")); } else { throw new RuntimeException("暂不知其他索引情况"); } String finalIndex = index; dateIndex = dateIndex.stream() .map(it -> finalIndex + "-" + it + "*") .collect(Collectors.toList()); } SearchRequest searchRequest = new SearchRequest(dateIndex.toArray(new String[dateIndex.size()])); searchRequest.source(searchSourceBuilder); SearchResponse search = null; try { // ES查询 search = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); } catch (IOException e) { e.printStackTrace(); log.error("ES查询出错:{}", e.getMessage(), e); } // 获取命中结果 SearchHits searchHits = search.getHits(); if (!ObjectUtils.isEmpty(searchHits.getHits())) { SearchHit[] hits = searchHits.getHits(); list = Arrays.stream(hits) .map(DocumentResponseVO::hitsMappingDocumentResponse) .peek(DocumentResponseVO::initSource) .collect(Collectors.toList()); } long totalHits = searchHits.getTotalHits(); int ceil = (int) Math.ceil(totalHits / (searchLogVo.getSize() * 1.0)); Page<DocumentResponseVO> page = new Page<>(); if (searchLogVo.getFrom() == 0) { page.setCurrent(1); } else { page.setCurrent(searchLogVo.getFrom() / searchLogVo.getSize() + 1); } page.setPages((long) ceil) .setTotal(totalHits) .setSize(searchLogVo.getSize()) .setRecords(list); return page; }
10、关于索引的API操作
10.1、创建索引
void createIndexTest(){ // 1、得到创建索引的请求 CreateIndexRequest createIndexRequest = new CreateIndexRequest("index1"); // 2、客户端执行请求,获得响应 CreateIndexResponse createIndexResponse = restHighLevelClient.indices().create(createIndexRequest, RequestOptions.DEFAULT); }
10.2、获取索引
void getIndexTest(){ GetIndexRequest getIndexRequest = new GetIndexRequest("index1"); boolean exists = restHighLevelClient.indices().exists(getIndexRequest, RequestOptions.DEFAULT); if (exists) { GetIndexResponse getIndexResponse = restHighLevelClient.indices().get(getIndexRequest, RequestOptions.DEFAULT); } }
10.3、删除索引
void deleteIndexTest(){ DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest("index1"); DeleteIndexResponse delete = restHighLevelClient.indices().delete(deleteIndexRequest, RequestOptions.DEFAULT); System.out.println(delete.isAcknowledged()); }
11、关于文档的API操作
public void initSource() { String logString = (String) sourceAsMap.get("log"); String tid = logString.substring(logString.indexOf("TID") + 4, logString.indexOf("]")); this.tid = tid; String[] split = logString.split("c.p.health.aop.log.BaseAopLog -", 2); if (split.length == 2) { String subLog = split[1]; subLog = StringUtils.trim(subLog); subLog = StringUtils.replace(subLog, "\n", ""); subLog = StringUtils.replace(subLog, "\t", ""); if (ObjectUtils.isEmpty(this.source)) { this.source = JsonUtils.json2pojo(subLog, RespLogVo.class); } } } public static DocumentResponseVO hitsMappingDocumentResponse(SearchHit hit) { DocumentResponseVO doc = new DocumentResponseVO(); doc.setDocId(hit.getId()) .setIndex(hit.getIndex()) .setType(hit.getType()) .setSourceAsMap(hit.getSourceAsMap()) .setSourceAsString(hit.getSourceAsString()) .setScore((double) hit.getScore()) .setLogLevel((String) hit.getSourceAsMap().get("log_level")); return doc; } ================================================== @Override public Page<DocumentResponseVO> listPageMatch(SearchLogVo searchLogVo) { List<DocumentResponseVO> list = new ArrayList<>(); // 构建查询条件 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 过滤字段 String[] fields = {"log", "log_level", "log_time"}; FetchSourceContext sourceContext = new FetchSourceContext(true, fields, Strings.EMPTY_ARRAY); searchSourceBuilder.fetchSource(sourceContext); BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); // 时间范围条件 RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("log_time"); rangeQueryBuilder.gte(searchLogVo.getBeginDate()); rangeQueryBuilder.lte(searchLogVo.getEndDate()); /// 时间格式 // rangeQueryBuilder.format("yyyy-MM-dd hh:mm:ss"); boolQueryBuilder.must(rangeQueryBuilder); // 日志级别 // 需将 log_level 的 type 设置成 keyword 后才可用 TermQueryBuilder List<String> logLevelList = Lists.newArrayList(searchLogVo.getLogLevel()); String logLevelQueryString = Joiner.on(" OR ").join(logLevelList); QueryStringQueryBuilder logLevelQueryBuilder = QueryBuilders.queryStringQuery(logLevelQueryString); logLevelQueryBuilder.field("log_level"); boolQueryBuilder.must(logLevelQueryBuilder); // 匹配查询 List<String> keywordList = new ArrayList<>(); if (ObjectUtil.isNotNull(searchLogVo.getKeyword())) { keywordList = Lists.newArrayList(searchLogVo.getKeyword()); } if (!keywordList.contains("系统日志")) { keywordList.add("系统日志"); } if (!StringUtils.isEmpty(searchLogVo.getTid())) { keywordList.add(searchLogVo.getTid()); } String keywordQueryString = Joiner.on(" AND ").join(keywordList); QueryStringQueryBuilder keywordQueryBuilder = QueryBuilders.queryStringQuery(keywordQueryString); keywordQueryBuilder.field("log"); boolQueryBuilder.must(keywordQueryBuilder); searchSourceBuilder.query(boolQueryBuilder); // 分页对象 searchSourceBuilder.from(searchLogVo.getFrom()); searchSourceBuilder.size(searchLogVo.getSize()); // 请求响应时间 searchSourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS)); // 排序 searchSourceBuilder.sort("@timestamp", SortOrder.ASC); SearchRequest searchRequest = new SearchRequest(searchLogVo.getIndex()); searchRequest.source(searchSourceBuilder); SearchResponse search = null; try { // ES查询 search = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT); } catch (IOException e) { e.printStackTrace(); log.error("ES查询出错:{}", e.getMessage(), e); } // 获取命中结果 SearchHits searchHits = search.getHits(); if (!ObjectUtils.isEmpty(searchHits.getHits())) { SearchHit[] hits = searchHits.getHits(); list = Arrays.stream(hits) .map(DocumentResponseVO::hitsMappingDocumentResponse) .peek(DocumentResponseVO::initSource) .collect(Collectors.toList()); } long totalHits = searchHits.getTotalHits(); int ceil = (int) Math.ceil(totalHits / (searchLogVo.getSize() * 1.0)); Page<DocumentResponseVO> page = new Page<>(); if (searchLogVo.getFrom() == 0) { page.setCurrent(1); } else { page.setCurrent(searchLogVo.getFrom() / searchLogVo.getSize() + 1); } page.setPages((long) ceil) .setTotal(totalHits) .setSize(searchLogVo.getSize()) .setRecords(list); return page; }
11.0、使用注意
11.0.1、使用 TermQueryBuilder 时需注意
使用精确查找时经常会失败,是因为你没将精确查询的字段的 type 设置成 keyword
.startObject("cyzjdm").field("type", "keyword").field("index", false).endObject()
term 做精确查询可以用它来处理数字,布尔值,日期以及文本。查询数字时问题不大,但是当查询字符串时会有问题。 term 查询的含义是 termQuery 会去倒排索引中寻找确切的 term,但是它并不知道分词器的存在。term 表示查询字段里含有某个关键词的文档,terms表示查询字段里含有多个关键词的文档。
也就是说直接对字段进行 term 本质上还是模糊查询,只不过不会对搜索的输入字符串进行分词处理罢了。如果想通过 term 查到数据,那么 term 查询的字段在索引库中就必须有与 term 查询条件相同的索引词,否则无法查询到结果。
即 elasticsearch 里默认的 IK分词器是会将每一个中文都进行了分词的切割,所以你直接想查一整个词,或者一整句话是无返回结果的。
11.0.1.1、关于 keyword
有的文章说设置该属性用于关键词搜索,不进行分词。对于字符串类型的字段,es 会默认生成一个 keyword字段用于精确搜索。也有的说实际上还是会分词,只不过keyword的设置增加了一个额外字段,该字段就是 filename.keyword。这个 keyword 才是不分词的索引字段,也就真正意义上实现了不分词处理字段。索引也是索引该字段才生成真正的精确匹配。至于分不分词实验一下就好了。感觉他们想表达的意思差不多是 filename.keyword 不分词,但是 filename 还是会分词。
11.1、添加/更新文档
// 创建请求 IndexRequest request = new IndexRequest("chw_index"); // 规则 PUT /chw_index/_doc/1 request.id("1"); // 请求的超时时间 request.timeout(TimeValue.timeValueSeconds(1)); // 把传过来的数据放入请求 request.source(JSON.toJSONString(传过来的对象), XContentType.JSON); // 客户端发送请求,获取响应的结果 IndexResponse indexResponse = client.index(request, RequestOptions.DEFAULT); System.out.println(indexResponse.toString()); System.out.println(indexResponse.status());
11.2、获取文档
GetRequest getRequest = new GetRequest("chw_index", "1"); // 不获取返回的 _source 的上下文了 getRequest.fetchSourceContext(new FetchSourceContext(false)); getRequest.storedFields("_none_"); boolean exists = client.exists(getRequest, RequestOptions.DEFAULT); // 获取文档信息 GetResponse getResponse = client.get(getRequest, RequestOptions.DEFAULT); // 文档的内容 getResponse.getSourceAsString();getResponse.getSourceAsMap();
11.3、更新文档
UpdateRequest updateRequest = new UpdateRequest("chw_index", "1"); updateRequest.timeout("1s"); // 把传过来的数据放入请求 updateRequest.doc(JSON.toJSONString(传过来的对象), XContentType.JSON); // 执行请求命令 UpdateResponse updateResponse = client.update(updateRequest, RequestOptions.DEFAULT);
11.4、删除文档
DeleteRequest deleteRequest = new DeleteRequest("chw_index", "1"); deleteRequest.timeout("1s"); DeleteResponse deleteResponse = client.delete(updateRequest, RequestOptions.DEFAULT);
11.5、批量操作
批量操作时使用 BulkRequest 对象, .什么方法,就做什么操作,最后 client.bulk,其他的操作和参数都是类似的。
BulkRequest bulkRequest = new BulkRequest(); bulkRequest.timeout("10s"); for(int i = 0; i < xxList.size(); i++){ bulkRequest.add( new IndexRequest("chw_index") .id(""+(i+1)) .source(传入对象的JSOn字符串, XContentType.JSON); ) } BulkResponse bulkResponse = client.bulk(bulkRequest, RequestOptions.DEFAULT); bulkResponse.hasFailures();// 是否成功
11.6、查询
-
SearchRequest:搜索请求
-
SearchSourceBuilder:条件构造
-
HighlightBuilder:构建高亮
-
TermQueryBuilder: 精确查询
-
XxxQueryBuilder...
SearchRequest searchRequest = new SearchRequest ("chw_index"); // 构建搜索条件构建器 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 查询条件构建器 // .termQuery:精确匹配,.matchAllQuery():匹配所有 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("name", "chw"); searchSourceBuilder.query(termQueryBuilder); // from和size 有默认值 // searchSourceBuilder.from(); // searchSourceBuilder.size(); searchSourceBuilder.timeout("60s"); searchRequest.source(searchSourceBuilder); SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT); // 命中的结果内容 searchResponse.getHits();
12、简单上手
12.1、京东搜索
12.1.1、爬虫
12.1.1.1、jsoup依赖
解析网页,如果想要解析视频需要用 tika
<dependency> <groupId>org.jsoup</groupId> <artifactId>jsoup</artifactId> <version>1.10.2</version> </dependency>
12.1.1.2、HTML 解析工具类
public class HtmlParseUtil { public static List<Object> parseJD(String keyword) throws Exception { // 请求地址,不能获取到 ajax String url = "https://search.jd.com/Search?keyword=" + keyword; // 解析网页,返回的 Document 就是页面的对象 Document document = Jsoup.parse(new URL(url), 30000); // 获取 div元素 Element goodsElement = document.getElementById("J_goodsList"); // 获取 li 元素 Element liElement = goodsElement.getElementsByTag("li"); List<自定义对象> 自定义对象List = new ArrayList<>(); for (Element el : liElement) { // 图片一般都是懒加载的 String img = el.getElementsByTag("img").eq(0).attr("data-lazy-img"); String price = el.getElementsByClass("p-price").eq(0).text(); String title = el.getElementsByClass("p-name").eq(0).text(); 自定义对象 对象 = new 自定义对象(); // 设置对象属性值 自定义对象List.add(对象); } } }
12.1.2、ES 入库、查询业务
public Boolean bulk(String keyword) { List<自定义对象> 自定义对象List = HtmlParseUtil.parseJD(keyword); BulkRequest bulkRequest = new BulkRequest(); bulkRequest.timeout("2m"); for(自定义对象 对象 : 自定义对象List){ bulkRequest.add(new IndexRequest("jd_goods_index") .source(JSON.toJSONString(对象), XContentType.JSON); ) } BulkResponse bulkResponse = client.bulk(bulkRequest, RequestOptions.DEFAULT); return !bulkResponse.hasFailures(); } public List<Map<String, Object>> pageByKeyword(String keyword, Integer pageNo, Integer pageSize) { SearchRequest searchRequest = new SearchRequest ("jd_goods_index"); SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 查询条件构建器 // .termQuery:精确匹配,.matchAllQuery():匹配所有 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", keyword); searchSourceBuilder.query(termQueryBuilder); // 高亮 HighlighterBuilder highlighterBuilder = new HighlighterBuilder(); highlighterBuilder.field("title"); highlighterBuilder.requireFieldMatch(false); highlighterBuilder.preTags("<span style='color:red'>"); highlighterBuilder.postTags("</span>"); searchSourceBuilder.highlighter(highlighterBuilder); searchSourceBuilder.from((pageNo - 1) * pageSize); searchSourceBuilder.size(pageSize); searchSourceBuilder.timeout(new TimeValue(60, TimeUtil.SECONDS)); searchRequest.source(searchSourceBuilder); SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT); // 命中的结果内容 List<Map<String, Object>> result = new ArrayList<>(); for (SearchHit document : searchResponse.getHits().getHits()) { // 解析高亮字段 Map<String, HighlightField> highlightFieldMap = document.getHighlightFields(); HighlightField title = highlightFieldMap.get("title"); Map<String, Object> sorceAsMap = document.getSourceAsMap(); if(title != null) { Text[] fragments = title.fragments(); String newTitle = ""; for (Text text : fragments) { newTitle += text; } // 解析出高亮并设置进去 sorceAsMap.put("title", newTitle); } result.add(sorceAsMap); } return result; }