1717 小数化分数2

这里写图片描述
这道题分为了三类:

①普通有限小数

②纯循环小数

③混循环小数

转化方法:

①这一类很简单,分子就是小数点后面的数,分母就是10的n次方(n为小数点后面位数)

②分子是循环的数,分母就是和它位数相同的9,比如0.(14),那么就是14/99

③这个就比上面的多了一步:

0.0105˙717˙=(105717-105)/9990000=105612/9990000=8801/832500

0.0˙869˙=869/9990,0.00˙716˙=716/99900=179/24975

0.368˙616˙=(368616-368)/999000=368248/999000=46031/124875

观察一下,就是小数部分减去不循环部分作为分母,分母就是循环部分个9和非循环部分个0组成,也许这么说很迷,还是看上面例子吧。

上面的步骤找到了分子分母,由GCD求最大公约数,约分一下即可。

#include<iostream>
#include<string>
using namespace std;

int gcd(int a, int b)//求最大公约数,且不用管a,b大小关系
{
    if (a%b == 0)
        return b;
    int t;
    t = a%b;
    return gcd(b, t);
}
int main()
{
    int n, flag, r, x, y, bei, g, bi;
    string s;
    while (cin >> n)
    {
        while (n--&&cin >> s)
        {
            x = 0, y = 0, flag = 0, bei = 1;
            if (s[2] == '(')//纯循环小数
            {
                for (int i = 3;; ++i)
                if (s[i] == ')')
                {
                    r = i;
                    break;
                }
                for (int i = r - 1; i >= 3; --i)
                {
                    x = x + (s[i] - '0') * bei;//string中存放的是字符序列
                    bei = bei * 10;
                }
                for (int i = 1; i <= r - 3; ++i)
                {
                    y = y + 9 * pow(10, i - 1);
                }
                g = gcd(x, y);
                x = x / g;
                y = y / g;
                cout << x << '/' << y << endl;
                continue;
            }
            for (int i = 0; i <= s.size() - 1; ++i)
            if (s[i] == '('&&i!=2)
            {
                flag = 1;
                bi = i;
            }
            if (flag == 0)//普通有限小数
            {
                for (int i = s.size() - 1; i >= 2; --i)
                {
                    x = x + (s[i] - '0') * bei;//string中存放的是字符序列
                    bei = bei * 10;
                }
                y = pow(10, s.size() - 2);
                g = gcd(x, y);
                x = x / g;
                y = y / g;
                cout << x << '/' << y << endl;
            }
            else {//混循环小数
                for (int i = 2; i <s.size() - 1; ++i)//小数点后所有数字
                {
                    if (i == bi)
                        continue;
                    x = x * 10 + s[i] - '0';
                }
                int p = 0;
                for (int i = 2; i < bi; ++i)//循环部分
                {
                    p = p * 10 + s[i] - '0';
                }
                x = x - p;//分子
                for (int i = 1; i <= s.size() - 1 - bi - 1; i++)//求分母
                    y = y * 10 + 9;
                for (int i = 1; i <= bi - 2; ++i)
                    y = y * 10;
                g = gcd(x, y);
                x /= g;
                y /= g;
                cout << x << '/' << y << endl;
            }
        }
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值