05
Date:2022.12.17--05 | |
Title:Multi‑Modal Feature Fusion‑Based Multi‑Branch Classification Network for Pulmonary Nodule Malignancy Suspiciousness Diagnosis | |
Framework | |
Methodology | Multi-branch:Three branches with different receptive fields at different levels (shallow layer, middle layer, and deep layer) are adopted to carry out multi-scale fusion of feature and improve the accuracy of classification. 3D ECA-ResNet:Two fully connected layers are replaced by fast one-dimensional convolution with kernel size k . |
Results | |
Contributions | 1.Radiological data of pulmonary nodules are used to construct a structured modal feature vector. 2.Multi-branch fusion network combined with 3D ECAResNet is used to extract unstructured modal features from CT images. 3.Multi-modal feature fusion of structured data and unstructured data is performed to distinguish benign and malignant nodules. |
Conclusion | The multi-branch fusion enhances the multiscale feature extraction ability of pulmonary nodules, and 3D ECA-ResNet dynamically adjusts channel features to further extract more representative nodule features. |
Notes | 1.Three branches with different receptive fields at different levels (shallow layer, middle layer, and deep layer. 2.Two fully connected layers are replaced by fast one-dimensional convolution with kernel size k . |