文献阅读3

05

Date:2022.12.17--05

Title:Multi‑Modal Feature Fusion‑Based Multi‑Branch Classification Network for Pulmonary Nodule Malignancy Suspiciousness Diagnosis

Link:Multi-Modal Feature Fusion-Based Multi-Branch Classification Network for Pulmonary Nodule Malignancy Suspiciousness Diagnosis | SpringerLink

Framework

Methodology

Multi-branch:Three branches with different receptive fields at different levels (shallow layer, middle layer, and deep layer) are adopted to carry out multi-scale fusion of feature and improve the accuracy of classification.

3D ECA-ResNet:Two fully connected layers are replaced by fast one-dimensional convolution with kernel size k .

Results         

Contributions

1.Radiological data of pulmonary nodules are used to construct a structured modal feature vector.

2.Multi-branch fusion network combined with 3D ECAResNet is used to extract unstructured modal features from CT images.

3.Multi-modal feature fusion of structured data and unstructured data is performed to distinguish benign and malignant nodules.

ConclusionThe multi-branch fusion enhances the multiscale feature extraction ability of pulmonary nodules, and 3D ECA-ResNet dynamically adjusts channel features to further extract more representative nodule features.

Notes

1.Three branches with different receptive fields at different levels (shallow layer, middle layer, and deep layer.

2.Two fully connected layers are replaced by fast one-dimensional convolution with kernel size k .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值