Q-Learning

本文介绍了Q-Learning算法,包括其行为策略——ε-贪婪法,以及优化策略——贪婪法更新Q表。Q-Learning通过在状态-行为对上进行价值函数更新,寻找最优策略。算法流程涉及根据状态选择动作,接收奖励并更新Q值,进而指导后续动作的选择。更新公式展示了Q值的迭代过程,其中包含了学习率α、折扣因子γ和最大Q值的选取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Agent在探索中寻找最优策略的过程包括两部分:

  1. 它在面对State的时候选择哪个Action去行动(选择的依据跟价值函数有关),这叫做行为策略
  2. 如何使用新得到的经验去更新价值函数,这叫做优化策略(注意这是个名词)

Q-Learning使用 ε \varepsilon ε-贪婪法作为行为策略,使用贪婪法作为优化策略来更新Q表。

Q-Learning算法概述

Q-Learning算法的拓扑图如下,白色远点表示状态,黑色圆点表示状态-行为对(即在状态下执行动作)

在这里插入图片描述

如上图,先基于状态 S t S_t St,用 ε \varepsilon ε-贪婪法 选择执行动作 A t A_t At,得到奖励值 R t + 1 R_{t+1} Rt+1,进入状态 S t + 1 S_{t+1} S

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值