《离散时间信号处理学习笔记》—离散时间信号与系统(二)

注:本博客是基于奥本海姆《离散时间信号处理》第三版编写,主要是为了自己学习的复习与加深。

 

 

一、离散时间信号与系统的频域表示

一)、线性时不变系统的特征函数

1、当输入为-∞<0<∞时,单位脉冲响应为h[n]的线性时不变系统的响应输出可以容易表示为

式中

1)、是该系统的特征函数,响应的特征值为H()。由此可见,H()给出了复指数在复振幅上的变化是频率w的函数。特征值H()称为系统的频率响应。

2)、一般H()是复数,可用它的实部和虚部表示为

或者用幅度和相位表示为

 

2、相当广泛的一类信号都能表示成如下形式的复指数的线性组合;

由此,一个线性时不变系统的相应输出就是

据此,根据上面两个式子,已知系统在所有频率wk上的频率响应就能求得系统输出。

 

3、离散时间线性时不变系统跟连续时间线性时不变系统不同在于是前者的频率响应总是频率w的周期函数,且周期为2π。更为一般的情况是

即H()时周期的,周期为2π。

1)、一般在区间-π<w≤π内给出H()特性。相对于这一区间,“低频”就在靠近于零处的哦尽量,而“高频”就是在靠近于±π的频率。通俗说话是:“低频”就在靠近于π的偶数倍的那些频率;“高频”就是在靠近于π的奇数倍的那些频率。

 

4、一类重要的线性时不变系统时期频率在某一频率范围内为1,而在其余的频率上都为零的系统,对应于理想频率选择滤波器。

 

 

二)、突然加上复指数输入

1、一个单位脉冲响应为h[n]的因果线性时不变系统的相应输出是

如果仅考虑n≥0时的输出,可以写成

由上式可见,输出由两项组成,即。其中,第一项

为稳定响应,它与当系统在全部n上的输入所得响应相同。在某种意义上,第2项

就是系统输出偏离特征函数结果的量。这一部分对应于暂态响应,因为很明显在某些情况下它可能趋近于零。

 

2、在暂态情况下,考虑暂态公式的大小,它的孤独被下式界定:

1)、如果h[n]是有限长的话,即h[n]仅在区间0≤n≤N内不为零,那么这一项对于n+1>M,或n>M+1,由yt[n]=0,这时

2)当h[n]为无限长是,暂态响应并不急剧消失;但是如果h[n]的样本随n增加而趋近于零,那么yt[n]必定最后趋于零。由此

也就是说,暂态响应由h[n]全部赝本的绝对值之和界定。如果上式的右边是有界的,即如果

那么该系统就是稳定的。暂态响应逐渐衰减的充分条件是系统是稳定的。

 

 

二、用博里叶变换表示序列

1、很多序列都能表示为如下博里叶积分的形式;

式中由下式给出:

前者称之为博里叶逆变换,后者称之为博里叶变换。

 

2、一般来说,博·里叶变换是w的一个复数值函数。和频率响应一样,有时将用直角坐标表示为

或以极坐标表示为

||表示博里叶变换的幅度,为相位。

1)、相位不是唯一给定的,因为任意w值上都可以加任何2π的整数倍到上,而不会影响这个复指数的结果。

I、当所指的事主值,即烬限在-π和+π之间的值时,将这个猪值基座ARG[].

II、如果所指的事在0<n<π内(即不是对2π去模)给出的一个w的连续函数的相位函数,就记作arg[]。

 

3、一个线性时不变系统的频率响应就是单位脉冲响应的博里叶转换。单位脉冲响应能够由频率响应应用博里叶逆变换积分来求得,也即

1)、频率响应应是一个关于w的周期函数。同样,博里叶变换也是关于w周期的,周期为2π。

2)、博里叶级数通常被用来表示周期信号。

 

4、确定哪一类信号可以用博里叶逆变换公式来表示的问题就等效于博里叶变换公式中无限项和的收敛问题。也就是说,要关心的事在博里叶变换求和中各项必须满足什么条件,才能使得;

这里是最M→∞时如下有限项和的极限:

收敛的充分条件可由下式得到:

因此,如果x[n]时绝对可加的,那么存在。

1)、一个稳定的序列式绝对可加的,因此全部稳定序列都是博里叶变换,从而可得,任何稳定系统,既具有绝对可加的单位脉冲响应的系统,都有一个有限且连续的频率响应。

2)、任何有限长的序列都是绝对可加的,从而都有一个博里叶变换表示。在线性时不变系统范围内,任何FIR狎鸥亭缥缈感都一定是稳定的,因此都有一个有限且连续的频率响应。然而,当一个序列属无限长是,必须关心无限求和的收敛问题。

3)、某些序列不是绝对可加的而是平方可加的,即

如果将定义的无限求和的一直收敛条件放宽的话,那么这样一些序列也能用博里叶变换来表示。在这种情况下是均方瘦脸的,即

那么

换句话说,误差随M→∞在每一个w值上可能不趋近于零,但是在误差中的总能量区域零。

4)、既不是聚堆可加的,也不是平方可加的,而||对所有w叶不是有限的。因此这样的数学表达式

必须要用广义理论来说明。利用这一理论,博里叶变换表示的概念可以和你严格地推广到这样一类序列,这类序列可以表示成离散频率分量的和,即

由此得

 

 

三、博里叶变换的对称性质

1、一个共轭对称序列定义为具有的序列;一个共轭反对称序列定义为具有的序列。这里的*记作复数共轭。

 

2、任何序列都能表示成一个共轭对称序列和一个共轭反对称序列之和,即

式中

一个共轭对称的实序列称为偶序列,一个共轭反对称的实序列称为奇序列。

 

3、一个博里叶变换能分解为宫格对称和共轭反对称之和

式中

是共轭对称的,而是共轭反对称的;也即

如果一个连续变量的势函数是共轭对称的,就称为偶函数;而一个连续变量的实共轭反对称函数就称为奇函数。

 

4、博里叶变换的对称性质

 

 

四、博里叶变换定理

1、博里叶变换定理

 

2、博里叶变换对

 

 

五、离散时间随机信号

1、一个随机信号就是一组离散时间信号的集合,它是一组概率密度函数来表征的。换句话说,在某一时刻,对于某一个特殊的信号来说,该信号样本在该时刻的大小是假定按照某种基本的概率方式确定的;也就是说,一个特殊信号的每一个单个样本x[n]嘉定是某基本随机变量xn的一个输出。全部信号由这样的随机变量的一个集合来表示,在-∞<n<∞内,每一个样本每一时刻都有一个集合。随机变量这个集合称为一个随机过程,并且假定一个特殊的样本序列x[n],-∞<n<∞,已经由引起该信号的随机过程所产生。为了完全描述这个随机过程,就需要给出全部随机变量的单个和联合概率函数。

 

2、开来一个稳定的实单位脉冲响应为h[n]的线性时不变系统。令x[n]是实值序列,且是一个广义平稳离散时间随机过程的一个样本序列。那么,该线性系统的输出也是一个随机过程的一个样本序列,它将输出与输入过程用如下线性变换方式联系起来;

如果输入时平稳的,那么输出也是平稳的。输入信号可以油其均值,和其相关函数来表征,或者由一些关于一阶甚至二阶概率分布的附加信号。在输出随机过程y[n]的表征中也希望由类似的信息。对于许多应用,用简单平均如均值、方差和自相关等来表征输入和输出就足够了。

1)、输入和输出过程的均值分别为

其关系为

频率响应的等效表达式为

2)、暂且假定输出是非平稳的,对于一个实数输入,输出过程的自相关函数为

因为假定x[n]是平稳的,所以

也就是说秘书处自相关序列叶仅与实践差m有关。由此可得,一个想性时不变系统被一个广义平稳输入所激励,其输出也是广义平稳的。

对上面的式子作置换l=r-k,则式子可表示为

式中已定义

序列称为h[n]的确定性自相关序列,或者简单地称为H[n]的自相关序列。

3)、博里叶变换对于表征一个线性时不变系统对一个随机输入的响应是有用的。为方便起见,假定m=0,其自相关斜方差序列是相同的。然后分别用的博里叶变换,由此得

另外,由前面的公式可得到

膳上式给出了一个有关功率密度谱的概念。具体说,

由上main的式子可得

 

3、另一个重要的结果设计一个线性时不变系统输入和输出之间的互相光:

可以看到,输入和输出之间的互相关是单位脉冲响应与输入自相关序列的卷积。上式的博里叶变换为

当输入为白噪声时,即,由上式可得

也就是说,对于一个零均值的白噪声输入,一个线性系统输入和输出·之间的互相关正比于该系统的单位脉冲响应。类似的,白噪声输入的功率谱为

由上式可得

也就是说,在这种情况下湖胡功率正比于该系统的频率响应。如果能够观察到一个输入为白噪声时的输出,那么上面的式子就可以用作估计一个线性时不变系统的单位脉冲响应或频率响应的基础。

  • 6
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值