《离散时间信号处理》—— 3. 线性时不变系统

写在前面:本博客是《离散时间信号处理》奥本海姆第三版的学习笔记,仅供个人学习记录使用
本篇博客详细介绍了线性时不变系统(LTI)的相关内容

一、LTI系统的性质

(1)线性时不变系统的线性值满足叠加原理,时不变值满足延迟不变性。
(2)一个LTI系统由单位脉冲响应 h [ n ] h[n] h[n]表征,给定输入 x [ n ] x[n] x[n],其输出 y [ n ] y[n] y[n]的时域、频域、z变换域分别表示为: 时域: y [ n ] = x [ n ] ∗ h [ h ] = ∑ − ∞ ∞ x [ n ] h [ n − k ] 频域: Y ( e j w ) = X ( e j w ) H ( e j w ) Z 变换: Y ( z ) = X ( z ) H ( z ) \begin{align*} 时域: & y[n]=x[n]*h[h]=\sum_{-\infty }^{\infty }x[n]h[n-k] & \\ 频域: & Y(e^{jw})=X(e^{jw})H(e^{jw}) & \\ Z变换: & Y(z)=X(z)H(z) \end{align*} 时域:频域:Z变换:y[n]=x[n]h[h]=x[n]h[nk]Y(ejw)=X(ejw)H(ejw)Y(z)=X(z)H(z)这里, H ( e j w ) H(e^{jw}) H(ejw)表示系统频率响应, H ( z ) H(z) H(z)表示系统(传递)函数。

(3)LTI系统的性质:
LTI系统的性质

一些LTI系统的性质:
LTI系统

二、LTI系统的频率响应:

1. LTI系统的频率响应

(1)如果输入为复指数序列 x [ n ] = e j w n , − ∞ < n < ∞ x[n]=e^{jwn},-\infty <n<\infty x[n]=ejwn,<n<,LTI系统单位脉冲响应为 h [ n ] h[n] h[n],则输出为:

表达式
这里, e j w n e^{jwn} ejwn为该系统的特征函数, H ( e j w ) = ∑ k = − ∞ ∞ h [ k ] e − j w k H(e^{jw})=\sum_{k=-\infty }^{\infty }h[k]e^{-jwk} H(ejw)=k=h[k]ejwk为相应的特征值,也叫做系统的频率响应。

举个栗子:求理想延迟系统的频率响应
题目分析:理想延迟系统 y [ n ] = x [ n − n d ] y[n]=x[n-n_{d}] y[n]=x[nnd],输入 x [ n ] = e j w n x[n]=e^{jwn} x[n]=ejwn
方法一:根据输入以及系统特性,可得输出为

方法一
因此系统的频率响应为: H ( e j w ) = e j w n d H(e^{jw})=e^{jwn_{d}} H(ejw)=ejwnd
方法二:由理想延迟系统的单位脉冲响应 h [ n ] = δ [ n − n d ] h[n]=\delta [n-n_{d}] h[n]=δ[nnd] ,直接可得系统频率响应:

方法二

(2)一个频率响应为 H ( e j w ) H(e^{jw}) H(ejw)的LTI系统输入和输出的傅里叶变换关系为 Y ( e j w ) = X ( e j w ) H ( e j w ) Y(e^{jw})=X(e^{jw})H(e^{jw}) Y(ejw)=X(ejw)H(ejw),系统的输入与输出的幅度和相位存在如下关系: ∣ Y ( e j w ) ∣ = ∣ X ( e j w ) ∣ ⋅ ∣ H ( e j w ) ∣ ∠ Y ( e j w ) = ∠ X ( e j w ) + ∠ H ( e j w ) |Y(e^{jw})|=|X(e^{jw})|\cdot |H(e^{jw})|\\\angle Y(e^{jw})=\angle X(e^{jw})+\angle H(e^{jw}) Y(ejw)=X(ejw)H(ejw)Y(ejw)=X(ejw)+H(ejw)其中, ∣ H ( e j w ) ∣ |H(e^{jw})| H(ejw)为系统的幅度响应或增益, ∠ H ( e j w ) \angle H(e^{jw}) H(ejw)为系统的相位响应或相移。若系统的幅度/相位响应导致信号以不期望的方式变化,则该情况下系统对信号的影响称为幅度/相位失真

2. 理想频率选择性滤波器

系统幅度响应 ∣ H ( e j w ) ∣ |H(e^{jw})| H(ejw)体现了系统对输入的频率分量抑制特性,系统对不同频率分量的抑制特性即为频率选择性
(1)理想低通滤波器的频率响应和单位脉冲响应为:抑制高频分量!
理想低通滤波器
(2)理想高通滤波器的频率响应和单位脉冲响应为:抑制低频分量!
理想低通滤波器

3. 相位失真及延时

(1)主值区间与群延迟
任何复数的相位不是唯一的,基于反正切获得的 H ( e j w ) H(e^{jw}) H(ejw)的相位称为主值相位,为主值相位
函数 H ( e j w ) H(e^{jw}) H(ejw)的任意相角可用相位主值偏移表示,即 ∠ H ( e j w ) = A R G [ H ( e j w ) ] + 2 π r ( w ) \angle H(e^{jw})=ARG[H(e^{jw})]+2\pi r(w) H(ejw)=ARG[H(ejw)]+2πr(w)
群延迟可以通过微分运算从主值区间计算得到,即:
群时延
群延迟表征系统相位非线性程度或对不同频率分量的相位影响。

(2)具有线性相位的理想低通滤波器的单位脉冲响应和频率响应为:
线性相位的理想低通滤波器
对于线性相位系统,单位脉冲响应的时移 ( n d ) (nd) (nd)导致频率响应中的相位响应随频率 ω ω ω线性变化。

(3)频响为 H ( e j w ) H(e^{jw}) H(ejw)的系统对窄带信号 x [ n ] = s [ n ] c o s ( w 0 n ) x[n]=s[n]cos(w_{0}n) x[n]=s[n]cos(w0n)的输出 X ( e j w ) X(e^{jw}) X(ejw)仅在 w = w 0 w=w_{0} w=w0附近为非零,则系统在 w = w 0 w=w_{0} w=w0窄带范围内对:信号相位的影响(系统相位响应)可近似表示为:
系统对窄带信号的相位响应特性
对于窄带信号,该系统近似为线性相位系统!

频谱(能量) 集中在 w = w 0 w=w_{0} w=w0附近的窄带信号 x [ n ] x[n] x[n]的包络 s [ n ] s[n] s[n]的群延迟由系统相位响应 ∠ H ( e j w ) \angle H(e^{jw}) H(ejw) w = w 0 w=w_{0} w=w0处的斜率的负值给出。
可以证明,系统对 x [ n ] x[n] x[n]的响应可近似:系统对窄带信号的相位响应特性

三、线性常系数差分方程

1. 定义

系统的输入 x [ n ] x[n] x[n]和输出 y [ n ] y[n] y[n]满足线性常系数差分方程:线性常系数差分方程
系统函数表示为:系统函数
差分方程与系统函数存在关系: 差分方程左边/右边多项式系数与系统函数分母/分子系数相同

2. 幅度与相位之间的关系

由已知的幅度/相位特性,及获得的相位/幅度特性, 可获得系统函数或频率响应。

  • 已知幅度响应,求系统函数:
    幅度响应
    幅度响应
    可见: H ( z ) H(z) H(z)的每个零点 c k c_{k} ck和极点 d k d_{k} dk C ( z ) C(z) C(z)中分别存在零点共轭倒数 ( c k , ( c k ∗ ) − 1 ) (c_{k},(c_{k}^{*})^{-1}) (ck,(ck)1)对和极点共轭倒数对 ( d k , ( d k ∗ ) − 1 ) (d_{k},(d_{k}^{*})^{-1}) (dk,(dk)1)

举个栗子:由 C ( z ) C(z) C(z)的零极点确定稳定、因果系统 H ( z ) H(z) H(z)的零极点
零极点
(1)对于稳定因果系统,极点必须位于单位圆内,因此由极点对可得 H ( z ) H(z) H(z)的极点为 p 1 , p 2 , p 3 p_{1},p_{2},p_{3} p1,p2,p3
(2)对于实系数有理系统函数, H ( z ) H(z) H(z)的零点要么是实数,要么是复数共轭对,因此由零点对可得与 H ( z ) H(z) H(z)有关的零点为 z 3 z_{3} z3 z 6 z_{6} z6 ( z 1 , z 2 ) (z_{1},z_{2}) (z1,z2) ( z 4 , z 5 ) (z_{4},z_{5}) (z4,z5)
(3)对于3极点3零点稳定因果系统,总共有4种具有相同幅度特性的不同的频率响应,4种零点组合为 ( z 3 , z 1 , z 2 ) , ( z 6 , z 1 , z 2 ) , ( z 3 , z 4 , z 5 ) , ( z 6 , z 4 , z 5 ) (z_{3},z_{1},z_{2}),(z_{6},z_{1},z_{2}),(z_{3},z_{4},z_{5}),(z_{6},z_{4},z_{5}) (z3,z1,z2)(z6,z1,z2)(z3,z4,z5)(z6,z4,z5)

3. 由ROC判断系统类型

(1)稳定系统与因果系统

  • 对于给定的序列,使 z z z变换收敛的 z z z值( 的取值区间)称为收敛域ROC。
  • 由z变换收敛定义,当 ∣ z ∣ = 1 |z|=1 z=1,稳定系统满足: ∑ n = ∞ ∞ ∣ h [ n ] z − n ∣ < ∞ \sum_{n=\infty }^{\infty } |h[n]z^{-n}|< \infty n=h[n]zn<
    即变换域系统稳定性条件等效为 H ( z ) H(z) H(z)的ROC包括单位圆。
  • 对于因果系统,其单位脉冲响应 h [ n ] h[n] h[n]必须是一个右边序列。则因果性条件等效于 H ( z ) H(z) H(z)ROC应位于最外面极点的外面。

(2)逆系统

对于 H ( z ) H(z) H(z)的逆系统满足: H ( z ) H i ( t ) = 1 H(z)H_{i}(t)=1 H(z)Hi(t)=1,因此 H ( z ) H(z) H(z)逆系统的系统函数可表示为:
逆系统
可见, H i ( t ) H_{i}(t) Hi(t)的极点为 H ( z ) H(z) H(z)的零点。

(3)全通系统

  • 全通系统:以恒定的增益/衰减通过输入信号的全部频率分量的系统。
  • 全通系统的系统函数一般形式:
    全通系统系统函数
    全通系统的系统函数由不同数量的一阶或二阶因式的乘积构成,全通系统的系统函数有 2 M c + M r 2M_{c}+M_{r} 2Mc+Mr个零点和极点,并且极点和零点互为(共轭)倒数对,即 ( d k , d k − 1 ) (d_{k},d_{k}^{-1}) (dk,dk1) ( e k , ( e k ∗ ) − 1 ) (e_{k},(e_{k}^{*})^{-1}) (ek,(ek)1)

全通指的是何意,用公式来理解:
对于具有这样一阶因子形式系统函数: H ( z ) = ( z − 1 − a ∗ ) / ( 1 − a z − 1 ) H(z)=(z^{-1}-a^{*})/(1-az^{-1}) H(z)=(z1a)/(1az1)
其幅度响应 ∣ H ( e j w ) ∣ |H(e^{jw})| H(ejw) w w w无关,增益恒定:
其幅度响应

  • 对于因果稳定的一阶全通系统连续相位为非正值,群时延为正值。
  • 对于因果稳定的二阶全通系统连续相位也为非正值。
  • 两个重要特性:全通系统连续相位在 0 < w < π 0<w<\pi 0<w<π为非正,稳定因果全通系统群时延总为正。
  • 全通系统用途:① 补偿相位失真
     补偿相位失真
    ②作为目标函数求出最小相位系统以补偿幅度失真
    作为目标函数求出最小相位系统以补偿幅度失真

(4)最小相位系统

  • 零点和极点都在单位圆内的系统为最小相位系统,最小相位系统可由其幅度响应唯一确定。
  • 任何有理系统函数都能表示成:
    最小相位系统
    其中, H m i n ( z ) H_{min}(z) Hmin(z)是最小相位系统, H a p ( z ) H_{ap}(z) Hap(z)是全通系统。

证明这个结论:假设 H ( z ) H(z) H(z)有一个零点 z = 1 / c ∗ z=1/c^{*} z=1/c在单位圆外,即|c|<1,其余的零极点都在单位圆内,则 H ( z ) H(z) H(z)可表示为: H ( z ) = H 1 ( z ) ( z − 1 − c ∗ ) H(z)=H_{1}(z)(z^{-1}-c^{*}) H(z)=H1(z)(z1c)式中 H 1 ( z ) H_{1}(z) H1(z)是最小相位系统, H ( z ) H(z) H(z)可以进一步写为:表达式
根据最小相位系统和全通系统零极点的性质,有:
在这里插入图片描述

因此,对于有多个零极点在单位圆外的系统,可针对各零极点分别构造全通因子,最终的全通系统为各全通因子的乘积。

  • 最小相位系统的性质:具有同一个幅度响应 ∣ H ( e j w ) ∣ |H(e^{jw})| H(ejw)的不同系统中,最小相位系统具有 ① 最小的相位滞后,② 最小的群延迟,③ 最小能量延迟

四、广义线性相位系统

1. 线性相位系统

对于线性相位系统,其频率响应为:线性相位系统
线性相位系统的相位和群延迟分别为:线性相位系统的相位和群延迟
线性相位系统具有恒定群延迟!
如果 2 α 2\alpha 2α为整数,系统的单位脉冲响应关于 α \alpha α是偶对称的,即 h [ 2 α − n ] = h [ n ] h[2\alpha -n]=h[n] h[2αn]=h[n]; 否则, h [ n ] h[n] h[n](采样点)不具备对称性。
对称性

2. 广义线性相位系统

(1)一个广义线性相位系统具有频率响应为:
广义线性相位系统
这里, α \alpha α β \beta β为实常数, A ( e j w ) A(e^{jw}) A(ejw) w w w的实函数。

广义体现在两方面:
(1)零相位系统 A ( e j w ) A(e^{jw}) A(ejw)不需一定取非负值,即在某些频率处可为负值
(2)初始相位不需一定取零值,即可存在初始相位。

广义线性相位系统的相位和群延迟分别为:
广义线性相位系统的相位和群延迟
(2)系统具有恒定群延迟的必要条件
具有恒定群延迟的系统的单位脉冲响应 h [ n ] h[n] h[n]、常数 α \alpha α β \beta β满足:必要条件
(3)系统具有恒定群延迟的充分条件
充分条件
当满足(1)时, h [ n ] h[n] h[n]关于 α \alpha α对称, A ( e j w ) A(e^{jw}) A(ejw)为偶函数。满足(2)时, h [ n ] h[n] h[n]关于 α \alpha α反对称, A ( e j w ) A(e^{jw}) A(ejw)为奇函数。

3. 因果广义线性相位系统

(1)因果FIR系统单位脉冲响应若满足关系:
因果FIR系统单位脉冲响应
则该系统具有广义线性相位,即系统频率响应可表示为:
因果FIR系统单位脉冲响应
A e ( e j w ) A_{e}(e^{jw}) Ae(ejw) w w w的实、偶、周期函数。
同理,若因果FIR系统单位脉冲响应若满足关系:
因果FIR系统单位脉冲响应
则该系统的频率响应可表示为:
因果FIR系统单位脉冲响应
A e ( e j w ) A_{e}(e^{jw}) Ae(ejw) w w w的实、偶、周期函数。

(2)根据对称的形式和M是偶数还是奇数,定义了四种FIR广义线性相位系统。
四种FIR广义线性相位系统
各类FIR系统适用限制:
各类FIR系统适用限制

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值