《离散时间信号处理学习笔记》—线性时不变系统的变换分析(一)

注:本博客是基于奥本海姆《离散时间信号处理》第三版编写,主要是为了自己学习的复习与加深。

 

 

一、LTI系统的频率响应

一)、频率响应相位和群延迟

1、在各频率点上的频率响应通常为一个复数。若利用极坐标形式来表示频率响应,则系统的输入和输出的博里叶变换的幅度和相位由下式联系;

式5.1

式5.2

其中||代表系统的幅度响应或增益,而为系统的相位响应或相移。式5.1和式5.2所表示的幅度和相位上的影响,如果输入信号以一种有用的方式变换,这就是所需要的;如果以一种有害的方式变化,这就是不需要的。后一种情况下,通常把LTI系统对系统的影响分别称为幅度失真和相位失真。

 

2、任何复试的相位角都不能唯一定义的。当利用反正切子程序对相位进行述职计算时,通常会得到主值。

1)、将相位的主值记为,其中

式5.3

2)、任何其他的,可以获得函数的正确复数值得角度,都可以用主值来进行表示,表达式如下

式5.4

其中r(w)是一个正的或负的整数,在各w值上可以不相同。

 

3、ARG[]是指卷绕相位。在幅度和相位表示中,ARG[]可以被去卷绕称为w连续变化的相位曲线。连续(展开后)相位曲线记为arg[]。相位的另一种特别有用的表示形式是通过如下定义的群延迟

式5.5

除了在不连续点上外,群延迟可以通过微分运算从主值中计算得到。类似的,可以将群延迟表示模糊相位的表示形式,表达式为

式5.6

 

4、一般的,可以把一个宽带信号看成具有不同中心频率的窄带信号的叠加。如果群延迟不随频率变换,则每个窄带分量将具有相同的时延。如果群延迟不是常数,不同频率包上有不同的时延,这便导致了输出信号能量的时间包散特性。也就是说,相位的非线性或等效为非恒定的群延迟会导致在时间上的色散。

 

 

二、用线性常系数差分方程表征系统

1、离散时间滤波器都是通过式5.7的常系数差分方程的形式来实现的

式子5.7

对于一个其输入和输出满足式5.7差分方程的系统,其系统函数有如下代数形式

式5.8

式5.8也可以表示成如下的因式形式

式5.9

 

2、差分方程与系统函数相应的代数表达式之间有一个直接的关系。具体的说,式5.8分子多项式与式5.7右边()有相同的系数和代数结构,而式5.9分母多项式与式5.8左边()有相同的系数和导数结构。

 

 

一)、稳定性和因果性

1、对于式5.7或式5.9的系统函数,有几种收敛域的选择。对一个给定的多项式之比,收敛域的每一种可能选择都将导致不同的单位脉冲响应,但它们全都对应于同一差分方程。然而,若假定系统是因果的,那么h[n]就必须是一个右边序列,因此H(z)的收敛域位于最外面极点的外面。另外,若假定系统是稳定的,单位脉冲响应必须是绝对可加,即

式5.10

因为式5.10在|z|=1时与下述条件一直:

式5.11

所以稳定性条件就等效于H(z)的收敛域包括单位圆。

 

2、因果性和稳定性不一定是互为兼容的要求。对于一个满足式5.7差分方程的线性时不变系统,要求它仅是因果有时稳定,则相应系统函数的收敛域必须是位于最外面极点的外面有包括单位圆。很显然,这就等于要求该系统函数的全部极点都在单位圆内。

 

 

二)、逆系统

1、对于一个系统函数为H(z)的线性时不变系统,其对应的逆系统定义为:系统函数为Hi(z)的逆系统与H(z)级联后,总的系统函数为1,即

式5.12

这意味着

式5.13

式5.12的等效时域条件是

式5.14

由式5.13,该逆系统的频率响应若存在,则有

式5.15

即Hi(z)是H(z)的倒数。该逆系统的对数幅度、相位和群延迟都是圆系统相应函数的负值。不是所有的系统都有一个逆系统。

 

2、有理系统函数的逆系统。具体地,考虑

式5.16

其零点在z=ck,极点在z=dk,以及另外可能的在z=0和z=∞的零点和/或极点。那么

式5.17

也就是说,Hi(z)的极点就是H(z)的零点;反之亦然。Hi(z)额收敛域是任何适当的预式5.18给出的区域中和的收敛域就是Hi(z)的有效收敛域

式5.18

若H(z)是零点在ck,k=1,...,M的一个因果系统,那么当且仅当Hi(z)的收敛域为

式5.19

时候,其逆系统一定是因果的。如果也要求逆系统时稳定的,那么Hi(z)的收敛域必须包括单位圆。因此就必须是

式5.20

也就是说全部H(z)的零点必须在单位圆内。因此,当且仅当H(z)的零点和极点都在单位圆内,一个稳定因果的线性时不变系统也有一个稳定因果的逆系统。

 

 

三)、有理函数的单位脉冲响应

1、任何具有一阶极点的,以z-1为幂给出的有理函数可以表示成如下形式;

式5.21

1)、式中第一个求和的这些项使用分母除以分子的长除法求得的。并且仅当M≥N时才有这些项。

2)、第二个和式中的系数Ak,可以用前面的式子推导得到。

3)、如果系统假定是因果的,那么收敛域就位于式5.21全部极点的外边,这样就可得

式5.22

式中第一个求和金丹M≥N时才存在。

 

2、在讨论LTI系统时,区分两类系统时有用的。

1)、在第一种情况下,至少有一个H(z)的非零极点未被某个零点抵消。这时,至少一项是具有这种形式的,h[n]就不会是有限长,即在某一有限区间外不是零因此,这类系统称为无限脉冲响应IIR系统。

2)、第二类系统是H(z)除z=0外,没有任何极点。因此,不可能进行部分分式展开。H(z)就只是一个如下z-1的多项式

式5.23

在这种情况下,H(z)除了一个常数因子外就完全由它的零点所确定由式5.23,h[n]凭直观就能看出是

式5.24

这时,单位脉冲响应在长度上是有限的,也即在某一有限区间之外为零因此这类系统就称有限脉冲响应(FIR)系统。

 

 

三、有理系统的频率响应

1、如果一个稳定的线性时不变系统有一个有理的系统函数,那么它的频率响应就具有如下形式

式5.25

为了确定与这样的系统频率响应有关幅度、相位和群延迟,将H(ejw)用H(z)的零极点来表示式很有用的。将z=ejw带入式5.9就得到如下表达式

式5.26

由式5.26可得|H(ejw)|为

式5.27

对应地,幅度平方函数为

式5.28

从式5.26可见,|H(ejw)|就是H(z)中全部零点因式在单位圆上求值的幅度乘积被全部极点因式在单位圆上求值的幅度乘积所除。表示成dB的形式,增益定义为

式5.29

式5.30

 

2、一个有理系统函数的相位响应具有如下形式

式5.31

其中arg[]表示连续(未峻绕的)相位。

 

3、有理系统函数的对应群延迟是

式5.32

一种等效的表示方式是

式5.33

 

 

一)、一阶系统的频率响应

1、单一因式的性质,该因式可以是在z平面内半径为r,相角为的一个极点,活着是一个零点所构成的典型项。

1)、此因式的幅度平方是

式5.34

2)、该因式所对应的以dB为单位的增益是

式5.35

如果因式表示一个零点则符号为正,如果因式代表一个极点则符号为负。

3)、该因式对主值的贡献是

式5.36

4)、将式(5.36)右边微分(除不连续点外)就得到该因式对群延迟的贡献为

式5.37

同样的,如果因式代表一个零点则符号为正,代表一个极点则符号为负。

 

2、在从连续时间或离散时间系统的零-极点图推导频率响应特性的过程中,复平面内的相应矢量图形通常式有用的。在这种结构下,每个极点和零点因式的复数值都能用在z平面上从极点或零点到单位圆上某一点的矢量来表示,对于具有如下形式的一阶系统函数

式5.38

其零-极点图如图1所示

图1

 

 

四、幅度和相位之间的关系

1、对于由线性常系数差分方程描述的系统,也即具有有利系统函数的系统,其幅度和相位特性之间由某种制约关系存在

1)、如果频率响应的幅度特性和零极点个数式已知的,那么与其有关的相位特性仅有有限种选择。

2)、如果零极点个数是已知的,那么除了一个幅度加权因子外,也仅有有限个幅度特性可供选择。

3)、在称之为最小相位的限制下,频率响应的幅度特性唯一决定了相位特性;而频率响应的相位特性出去一个幅度加权因子外也决定了幅度特性。

 

2、为了阐明在给定系统频率响应的幅度平方特性下,系统函数的可能选择,考虑将表示成

式5.39

由于将系统函数H(z)限制为下式的有理形式

式5.40

那么,式(5.39)中的H*(1/z*)为

式5.41

这里已家定a0,b0都是实数。因此式(5.39)意味着该频率响应的幅度平方就是由侠士给定的z变换C(z)在单位圆上的求值

式5.42

如果已知表示为ejw函数的,那么以z代替ejw就能构造出C(z),由C(z)能推出全部可能的H(z)。

1)、对于H(z)的每个极点dk,在C(z)中就会有dk和(dk*)-1的极点存在。

2)、对于H(z)的每个零点ck,在C(z)就会有零点ck和(ck*)-1的存在。

 

3、C(z)的零极点是以共轭倒数对的形式出现的,每对中的一个是与H(z)相联系的,另一个则与H*(1/z*)有关。再者,如果每队中的一个是在单位圆内的话,那么另外一个(即共轭倒数)就一定在单位圆外。仅有的例外是这两个都在单位圆上,那么它们就在同一位置上。如果H(z)假设是对应于因果稳定的系统,那么它的全部极点都必须位于单位圆内。有了这个先知,H(z)的极点可以从C(z)分离出来。然而,仅凭这一点,H(z)的零点还是不能从C(z)的零点中唯一地被确定。

 

 

五、全通系统

1、具有形式为

式5.43

的稳定系统函数其频率响应的幅度与w无关。这类系统成为全通系统。

 

2、具有实值单位脉冲响应全通系统的系统函数的最一般形式就是像式(5.43)那样的因式的乘积,其复数极点是以共轭成对出现的,即

式5.44

式中,A是一正常数,dk均为H(z)的实数极点,而ek代表的复数极点。对于因果而稳定的全通系统,|dk|<1和|ek|<1.利用系统函数的一般概念,全通系统有M=N=2Mc+Mr个极点和零点。

 

3、用的极坐标形式表示为a,式(5.43)的相位函数是

式5.45

同样,具有极点的二阶全通系统的相位是

式5.46

  • 5
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值