2020年计算机视觉综述论文汇总!涵盖14个方向:目标检测/图像分割/医学影像/人脸识别等方向

本文汇总了从2020年4月至现在的54篇计算机视觉领域综述性论文,覆盖图像分割、人脸识别、医学影像等多个研究方向。文章提供了丰富的资源链接,便于读者深入了解各领域的最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导读:本文共汇总了从2020年4月至今的计算机视觉领域综述性论文,共54篇,涵盖图像分割、 图像识别、人脸识别/检测、医学影像、目标检测、3D方向(自动驾驶/深度估计)、GAN、文本检测与识别、姿态估计等14个研究方向。54篇论文打包下载请前往极市社区

图像分割

Unsupervised Domain Adaptation in Semantic Segmentation: a Review

标题:语义分割中的无监督自适应研究进展

作者:Marco Toldo, Pietro Zanuttigh

链接:https://arxiv.org/abs/2005.10876

A survey of loss functions for semantic segmentation

标题:语义分割损失函数综述

作者:Shruti Jadon

链接:https://arxiv.org/abs/2006.14822

A Survey on Instance Segmentation: State of the art

标题:实例分割技术综述

作者:Abdul Mueed Hafiz, Ghulam Mohiuddin Bhat

链接:https://arxiv.org/abs/2007.00047

人脸识别/检测

Deep Learning Based Single Sample Per Person Face Recognition: A Survey

标题:基于深度学习的单样本人脸识别研究综述

作者:Delong Chen, Zewen Li

链接:https://arxiv.org/abs/2006.11395

A survey of face recognition techniques under occlusion

标题:遮挡下的人脸识别技术综述

作者:Dan Zeng, Luuk Spreeuwers

链接:https://arxiv.org/abs/2006.11366

本文介绍了现有的面部识别方法如何解决遮挡问题,并将其分为三类:1)遮挡鲁棒特征提取方法;2)遮挡感知的面部识别方法;3)基于遮挡恢复的面部识别方法。共引用193篇文献。

Biometric Quality: Review and Application to Face Recognition with FaceQnet

标题:生物特征质量:FaceQnet在人脸识别中的应用

作者:Javier Hernandez-Ortega, Laurent Beslay

链接:https://arxiv.org/abs/2006.03298

Threat of Adversarial Attacks on Face Recognition: A Comprehensive Survey

标题:对抗攻击对人脸识别的威胁:综述

作者:Fatemeh Vakhshiteh, Ahmad Nickabadi

链接:https://arxiv.org/abs/2007.11709

本文对针对人脸识别系统的对抗性攻击进行了全面研究,详细阐述了针对这些系统的新对策,并根据不同的标准提出并比较了现有攻防策略的分类法。

Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review

标题:跨种族人脸反欺骗识别挑战:综述

作者:Ajian Liu, Stan Z. Li

链接:https://arxiv.org/abs/2004.10998

The Creation and Detection of Deepfakes: A Survey

标题:深度伪装的产生与检测:综述

作者:Yisroel Mirsky, Wenke Lee

链接:https://arxiv.org/abs/2004.11138

图像识别

Visual Relationship Detection using Scene Graphs: A Survey

标题:基于场景图的视觉关系检测研究综述

作者:Aniket Agarwal, Vipul

链接:https://arxiv.org/abs/2005.08045

本文对场景图生成的各种技术,它们表示视觉关系的效率以及如何用于解决各种下游任务的方法进行了详细的研究,并分析了该领域未来可能发展的各种未来方向。共引用95篇文献。

Deep learning for scene recognition from visual data: a survey

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值