使用Python进行人脸编码和比较
简介
在这个教程中,我们将学习如何使用Python和face_recognition
库来加载图像、提取人脸编码,并比较两个人脸是否相似。face_recognition
库是一个强大的工具,它基于dlib的深度学习模型,可以轻松实现人脸检测和识别功能。本教程适合初学者,我们将通过一个简单的项目来了解这个库的基本用法和环境配置。
代码示例
import face_recognition
import cv2
import matplotlib.pyplot as plt
def load_and_encode_face(image_path):
"""加载图片并获取人脸编码"""
# 加载图像
image = face_recognition.load_image_file(image_path)
# 检查图像是否为8位灰度或RGB
if image.dtype == 'uint8' and (len(image.shape) == 2 or image.shape[2] == 3):
# 图像已经是8位灰度或RGB
pass
else:
# 转换为8位RGB图像
image = cv2.convertScaleAbs(image)
if len(image.shape) == 2:
# 如果是灰度图像,转换为RGB
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
elif image.shape[2] == 4:
# 如果是RGBA,转换为RGB
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
face_encodings = face_recognition.face_encodings(image)
if face_encodings:
return face_encodings[0], image
else:
raise ValueError("No faces found in the image.")
def compare_faces(known_face_encoding, unknown_face_encoding, tolerance=0.5):
"""比较两个人脸编码是否相似"""
results = face_recognition.compare_faces([known_face_encoding], unknown_face_encoding, tolerance=tolerance)
return results[0]
def plot_faces(known_image, unknown_image, match):
"""绘制并显示两张人脸图像"""
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
axes[0].imshow(cv2.cvtColor(known_image, cv2.COLOR_BGR2RGB))
axes[0].set_title("Known Face")
axes[1].imshow(cv2.cvtColor(unknown_image, cv2.COLOR_BGR2RGB))
axes[1].set_title("Unknown Face")
# 显示匹配结果
if match:
plt.suptitle("Faces Match")
else:
plt.suptitle("Faces Do Not Match")
plt.show