# 导包
import torch
from torch.autograd import Variable
# 创建一个tensor命名为a,并给定变量内的值,将tensor设置为可梯度下降,这里仅有FloatTensor型的tensor可进行梯度下降
a = Variable(torch.FloatTensor([[1, 2], [3, 4]]), requires_grad=True)
# 表示a=[1,2]的2×2的一个矩阵,但是本质是一个张量,且是可梯度下降的
# [3,4]
# 求a*a平方后的均值,并赋值给out
# 但是为了往后的梯度下降,也就是对a求导,这里将out看作为a²/4
out = torch.mean(a*a)
# 给予out反向传播的权力,也就是求导的权力
out.backward()
# 求out对a的导数,也就是d(out)/d(a) = a/2
print(a.grad)
# 其结果为a/2=tensor([[0.5000, 1.0000],
# [1.5000, 2.0000]])
Pytorch使用backward()求导的例子
最新推荐文章于 2025-01-10 11:45:45 发布
这篇博客介绍了如何在PyTorch中创建一个可进行梯度下降的张量,并通过示例展示了如何计算张量的平方平均值的梯度。使用`Variable`包装`torch.FloatTensor`并设置`requires_grad=True`来启用梯度跟踪。接着,通过`out.backward()`执行反向传播,最后输出`a.grad`得到梯度,即`a/2`。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
PyTorch 2.5
PyTorch
Cuda
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理
1708

被折叠的 条评论
为什么被折叠?



