pytorch的梯度计算以及backward方法

基础知识

tensors:

tensor在pytorch里面是一个n维数组。我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度。在pytorch中一般叫做dynamic computation graph(DCG)——即动态计算图。

import torch
import numpy as np

# 方式一
x = torch.randn(2,2, requires_grad=True)

# 方式二
x = torch.autograd.Variable(torch.Tensor([2,3]), requires_grad=True)

#方式三
x = torch.tensor([2,3], requires_grad=True, dtype=torch.float64)

# 方式四
x = np.array([1,2,3] ,dtype=np.float64)
x = torch.from_numpy(x)
x.requires_grad = True
# 或者 x.requires_grad_(True)

note1:在pytorch中,只有浮点类型的数才有梯度,故在方法四中指定np数组的类型为float类型。为什么torch.Tensor中不需要呢,可以通过以下代码验证

import torch
import numpy as np

a = torch.Tensor([2,3])
print(a.dtype)  # torch.floaat32

b = torch.tensor([2,3])
print(b.dtype)  # torch.int64

 c = np.array(2,3)
 print(c.dtype) # int64

note2pytorch中tensor与Tensor的区别是什么?这两个看起来如此相似。
首先,torch.Tensor是一个类,所有的tensor都是Tensor的一个实例;而torch.tensor是一个函数。这也说明了为什么使用torch.Tensor()没有问题而torch.tensor()却有问题。
其次,torch.tensor主要是将一个data封装成tensor,并且可以指定requires_grad。
torch.tensor(data,dtype=None,device=None,requires_grad=False) - > Tensor
最后,我们更多地使用torch.tensor,我们可以通过使用torch.tensor(())来达到与torch.Tensor()同样的效果。
具体可参考torch.tensor与torch.Tensor的区别

Dynamic Computational graph

我们来看一个计算图
在这里插入图片描述
我们 来看一个计算图 解释一下各个属性的含义,

  • data: 变量中存储的值,如x中存储着1,y中存储着2,z中存储着3
  • requires_grad:该变量有两个值,True 或者 False,如果为True,则加入到反向传播图中参与计算。
  • grad:该属性存储着相关的梯度值。当requires_grad为False时,该属性为None。即使requires_grad为True,也必须在调用其他节点的backward()之后,该变量的grad才会保存相关的梯度值。否则为None
  • grad_fn:表示用于计算梯度的函数。
  • is_leaf:为True或者False,表示该节点是否为叶子节点。

当调用backward函数时,只有requires_grad为true以及is_leaf为true的节点才会被计算梯度,即grad属性才会被赋予值。

梯度计算

examples

  1. 运算结果变量的requires_grad取决于输入变量。例如:当变量z的requires_grad属性为True时,为了求得z的梯度,那么变量b的requires_grad就必须为true了,而变量x,y,a的requires_grad属性都为False。
    将事先创建的变量,如x、y、z称为创建变量;像a、b这样由其他变量运算得到的称为结果变量。

    from torch.autograd import Variable
    
    x = Variable(torch.randn(2,2))
    y = Variable(torch.randn(2,2))
    z = Variable(torch.randn(2,2), requires_grad=True)
    
    
    a = x+y
    b = a+z
    
    print(x.requires_grad, y.requires_grad, z.requires_grad) # False, False, True
    print(a.requires_grad, b.requires_grad) # False, True
    
    print(x.requires_grad) # True
    print(a.requires_grad) # True
    
  2. 调用backward()计算梯度

    import torch as t
    from torch.autograd import Variable as v
    
    a = v(t.FloatTensor([2, 3]), requires_grad=True)    
    b = a + 3
    c = b * b * 3
    out = c.mean()
    out.backward(retain_graph=True) # 这里可以不带参数,默认值为‘1’,由于下面我们还要求导,故加上retain_graph=True选项
    
    print(a.grad) # tensor([15., 18.])
    
  3. backward中的gradient参数使用

    a. 最后的结果变量为标量(scalar)

    如第二个例子,通过调用out.backward()实现对a的求导,这里默认调用了out.backward(gradient=None)或者指定为out.backward(gradient=torch.Tensor([1.0])

    b. 最后的结果变量为向量(vector)

    import torch
    from torch.autograd import Variable as V
    
    m = V(torch.FloatTensor([2, 3]), requires_grad=True)   # 注意这里有两层括号,非标量
    n = V(torch.zeros(2))
    n[0] = m[0] ** 2
    n[1] = m[1] ** 3
    n.backward(gradient=torch.Tensor([1,1]), retain_graph=True)
    print(m.grad)
    

    结果为:

    tensor([ 4., 27.])
    

    如果使用n.backward()的话,那么就会报如下的错:RuntimeError: grad can be implicitly created only for scalar outputs
    注意:这里的gradient的维度必须与n的维度相同。其中的原理如下:

    在执行z.backward(gradient)的时候,如果z不是一个标量,那么先构造一个标量的值:L = torch.sum(z*gradient),再计算关于L对各个leaf Variable的梯度。

在这里插入图片描述
δ L δ m = δ L δ z ∗ δ z δ m \frac{\delta L}{\delta m} = \frac{\delta L}{\delta z}* \frac{\delta z}{\delta m} δmδL=δzδLδmδz
由于 δ L δ z = 1 \frac{\delta L}{\delta z} = 1 δzδL=1,故m.grad的梯度不变。

参考资料:

讲解了z.backward(gradient)的原理
提供了一些求梯度的案例
讲解了一些基础知识与概念

### 回答1: PyTorch梯度裁剪是指对模型训练中的梯度进行限制,以防止梯度爆炸或梯度消失的问题。在PyTorch中,可以使用``torch.nn.utils.clip_grad_norm_``函数对模型的梯度进行裁剪。 该函数的输入参数包括模型参数,裁剪阈值(clip_value),以及裁剪类型(clip_type)。裁剪类型可以是norm或value。norm表示对梯度的范数进行限制,而value表示对梯度的数值进行限制。 下面是一个使用梯度裁剪的示例代码: ```python import torch.nn.utils as torch_utils # 定义模型 model = ... # 定义损失函数 criterion = ... # 定义优化器 optimizer = ... # 训练模型 for epoch in range(num_epochs): for inputs, targets in data_loader: # 前向传播 outputs = model(inputs) loss = criterion(outputs, targets) # 反向传播 optimizer.zero_grad() loss.backward() # 梯度裁剪 torch_utils.clip_grad_norm_(model.parameters(), clip_value) # 更新参数 optimizer.step() ``` 在上述示例代码中,``clip_value``是裁剪阈值,可以根据实际情况进行调整。使用PyTorch梯度裁剪可以提高模型的训练效果和稳定性。 ### 回答2: 梯度裁剪是一种常用的优化技术,用于解决深度学习模型训练过程中的梯度爆炸和梯度消失问题。PyTorch提供了一种简单的方法来执行梯度裁剪。 在PyTorch中,可以使用`torch.nn.utils.clip_grad_norm_(parameters, max_norm)`函数来实现梯度裁剪。这个函数接受两个参数,`parameters`表示需要进行梯度裁剪的参数列表,`max_norm`表示梯度的最大范数,超过该范数的梯度将被裁剪。裁剪后的梯度将被按比例重新缩放,以保持梯度的方向和相对大小。 例如,假设我们有一个模型`model`,并且定义了一个优化器`optimizer`来更新模型的参数。在每次反向传播之前,我们可以使用梯度裁剪来限制参数的梯度大小: ``` optimizer.zero_grad() # 清空梯度 loss.backward() # 反向传播计算梯度 torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) # 对参数梯度进行裁剪 optimizer.step() # 优化器更新参数 ``` 这样,如果任意参数梯度的范数超过`max_norm`,则会按比例缩小梯度,使其不超过该范数。 梯度裁剪可以有效地防止梯度爆炸,使训练过程更加稳定和可靠。然而,值得注意的是,梯度裁剪并不能解决梯度消失的问题,对于梯度消失,需要采取其他方法,如初始化参数的策略、使用激活函数等。 总之,PyTorch提供了方便的梯度裁剪功能,通过控制梯度大小可以有效解决梯度爆炸问题,提升深度学习模型的稳定性和训练效果。 ### 回答3: PyTorch梯度裁剪是一种用于控制梯度值大小的技术。有时候在训练神经网络的过程中,梯度值可能出现非常大的情况,这可能导致训练过程不稳定,甚至发散。为了解决这个问题,我们可以使用梯度裁剪来限制梯度的范围。 梯度裁剪的思想是设定一个阈值上下限,当梯度的范围超过这个阈值时,将其裁剪到指定范围内。这可以通过PyTorch中的`torch.nn.utils.clip_grad_norm_()`方法来实现。该方法接受两个参数,第一个参数是需要裁剪梯度的参数列表,第二个参数是设定的最大范数。 具体而言,我们可以先计算所有参数的梯度范数。然后,如果范数超过了设定的最大范数,就将梯度进行重新缩放,以使其范数等于最大范数。这样可以确保梯度的范围不会过大。 例如,假设我们有一个参数列表`params`,我们可以使用以下代码对其梯度进行裁剪: ```python torch.nn.utils.clip_grad_norm_(params, max_norm) ``` 其中,`max_norm`是我们设定的最大范数。 通过梯度裁剪,我们可以有效地控制梯度的大小,以提高训练的稳定性和收敛性。但是需要注意的是,梯度裁剪可能会改变梯度的方向,这可能会对模型的性能产生一些影响。因此,在使用梯度裁剪时需要谨慎选择裁剪的范围和阈值。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值