最大连续子序列和 分治思想和动态规划思想

本文探讨了解决最大连续子序列和问题的两种策略:分治和动态规划。通过分治方法,将序列拆分为两部分,并找到其中的最大子序列和。而动态规划则通过dp数组逐次更新,实现更高效的解决方案。
摘要由CSDN通过智能技术生成

解决最大连续子序列和的两种方法:分治,动态规划。

分治时间复杂度虽然更高,但我还是写了一遍加深对这种思想的理解:将一个问题分治成若干个小的同样思路的子问题来解决。本题将所求序列等分成左右两个子序列,愿序列的最大子序列和必是左序列最大子序列和,有序列最大子序列和,跨左右子序列最大和三者中的最大者。

动态规划:用dp[i]更新dp[i+1]就行。

分治:

//
//  main.cpp
//  1109
//
//  Created by Fangpin on 15/3/9.
//  Copyright (c) 2015年 FangPin. All rights reserved.
//

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int a[104];
int f(int l,int r){
    int m=(l+r)>>1;
    if(l>=r) return a[l];
    int left=f(l,m);
    int right=f(m+1,r);
    int mid=-1e10,sum=0;
    for(int i=m;i>=0;--i){
        sum+=a[i];
        mid=max(mid,sum);
    }
    sum=0;
    int maxn=-1e10;
    for(int i=m+1;i<=r;++i){
        sum+=a[i];
        maxn=max(maxn,su
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值