UDNN:通过将ISTA(Iterative shrinkage-thresholding algorithm)求解器映射到深度学习网络来解决压缩感知问题。
在UDNN网络中设计了两条平行线,分别用于实部和虚部的计算,这些线中的信息相互交错,以保证网络运算等价于复杂运算。此外,UDNN包含两个重复阶段,分别对应于ISTA中的两个迭代步骤。
不同于传统的线性变换,UDNN采用了非线性可学习和稀疏变换,UDNN中涉及的所有参数(如非线性变换、收缩阈值、测量矩阵等)都是通过反向传播端到端学习的。
LASSO公式可用于估计矢量化的高速信道:
ISTA解决上面的问题需要使用以下两个迭代步骤::
提出的UDNN以低计算复杂度求解这个LASSO问题
UDNN的基本思想是充分利用ISTA方法的优点,对以前的ISTA迭代进行映射到一个由固定数量的层组成的深度神经网络,每一层对应ISTA中的一次迭代。
- ISTA的第k次迭代对应于的第k层
- 箭头对应操作之间的数据流
- 每一层中,两类节点分别映射定义的非线性变换操作和重构操作
- 在网络中使用两条平行传播线分别计算实部和虚部,两条传播线之间进行信息交换,以确保网络中的运算等价于复杂运算,而只使用实数
深度UDNN保留了ISTA的结构,但将两个操作(Z (k), X (k))归纳为两个可学习层,即重构层和非线性变换层