论文:Unfolded Deep Neural Network(UDNN) for High Mob

UDNN是一种深度学习网络,它模仿ISTA(迭代 shrinkage-thresholding 算法)来解决压缩感知问题。网络设计包含两条并行线处理实部和虚部,所有参数如非线性变换、收缩阈值等通过反向传播学习。UDNN将ISTA的迭代步骤转化为深度学习层,以低计算复杂度解决LASSO问题,保留了ISTA的结构并引入了可学习的非线性变换和重构层。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UDNN:通过将ISTA(Iterative shrinkage-thresholding algorithm)求解器映射到深度学习网络来解决压缩感知问题。

在UDNN网络中设计了两条平行线,分别用于实部和虚部的计算,这些线中的信息相互交错,以保证网络运算等价于复杂运算。此外,UDNN包含两个重复阶段,分别对应于ISTA中的两个迭代步骤。

不同于传统的线性变换,UDNN采用了非线性可学习和稀疏变换,UDNN中涉及的所有参数(如非线性变换、收缩阈值、测量矩阵等)都是通过反向传播端到端学习的。

LASSO公式可用于估计矢量化的高速信道x\underset{x}{min}\frac{1}{2}\left \| y-Ax \right \|_{2}^{2}+\lambda \left \| x \right \|_{1}

 ISTA解决上面的问题需要使用以下两个迭代步骤::

提出的UDNN以低计算复杂度求解这个LASSO问题

UDNN的基本思想是充分利用ISTA方法的优点,对以前的ISTA迭代进行映射到一个由固定数量的层组成的深度神经网络,每一层对应ISTA中的一次迭代。

  •  ISTA的第k次迭代对应于的第k层
  • 箭头对应操作之间的数据流
  • 每一层中,两类节点分别映射定义的非线性变换操作和重构操作
  • 在网络中使用两条平行传播线分别计算实部和虚部,两条传播线之间进行信息交换,以确保网络中的运算等价于复杂运算,而只使用实数

深度UDNN保留了ISTA的结构,但将两个操作(Z (k), X (k))归纳为两个可学习层,即重构层和非线性变换层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞大圣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值