我认为最直观的一种方式:
import os
# 使用第三块GPU
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
其他方式:
第一种:
在运行 py 文件时设置:
CUDA_VISIBLE_DEVICES=0,1 python3 gpu_test.py
第二种:
动态分配显存:
# 1.让TensorFlow按需分配显存
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# 2.直接指定显存比例
config.gpu_options.per_process_gpu_memory_fraction = 0.4
# 占用 GPU 40%
# 再传入Session当中
session = tf.Session(config=config)
日志级别设置:
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"]='1' # 这是默认的显示等级,显示所有信息
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error
os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 只显示 Error
如果在使用 nvidia-smi 命令时出现较慢的情况,在终端输入:
# sudo nvidia-persistenced --persistence-mode