tensorflow指定使用哪块GPU运行程序

我认为最直观的一种方式:

import os

# 使用第三块GPU
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

其他方式:

第一种:

在运行 py 文件时设置:

CUDA_VISIBLE_DEVICES=0,1 python3 gpu_test.py

第二种:

动态分配显存:

# 1.让TensorFlow按需分配显存
config = tf.ConfigProto()
config.gpu_options.allow_growth = True

# 2.直接指定显存比例
config.gpu_options.per_process_gpu_memory_fraction = 0.4
# 占用 GPU 40%

# 再传入Session当中
session = tf.Session(config=config)

日志级别设置:

import os

os.environ["TF_CPP_MIN_LOG_LEVEL"]='1' # 这是默认的显示等级,显示所有信息
os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error 
os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 只显示 Error

如果在使用 nvidia-smi 命令时出现较慢的情况,在终端输入:

# sudo nvidia-persistenced --persistence-mode

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值