[大模型]GLM-4-9b-Chat 接入 LangChain

环境准备

01-ChatGLM4-9B-chat FastApi 部署调用环境准备模型下载基础上,我们还需要安装 langchain 包。如果不需要使用fastapi相关功能,则可以不安装 fastapi、uvicorn、requests

pip install langchain==0.2.1

注意langchain这里使用2024年5月新发布的v0.2版本, 但本教程代码经过测试,也兼容langchain的0.1.15版本,下载方式如下:

pip install langchain==0.1.15

考虑到部分同学配置环境可能会遇到一些问题,我们在 AutoDL 平台准备了 GLM-4 的环境镜像,该镜像适用于本教程需要 GLM-4 的部署环境。点击下方链接并直接创建 AutoDL 示例即可。(vLLM 对 torch 版本要求较高,且越高的版本对模型的支持更全,效果更好,所以新建一个全新的镜像。) https://www.codewithgpu.com/i/datawhalechina/self-llm/GLM-4

代码准备

为便捷构建 LLM 应用,我们需要基于本地部署的 Chat,自定义一个 LLM 类,将 ChatGLM4 接入到 LangChain 框架中。完成自定义 LLM 类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

基于本地部署的 ChatGLM4 自定义 LLM 类并不复杂,我们只需从 Langchain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可:

from langchain.llms.base import LLM
from typing import Any, List, Optional, Dict
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

class ChatGLM4_LLM(LLM):
    # 基于本地 ChatGLM4 自定义 LLM 类
    tokenizer: AutoTokenizer = None
    model: AutoModelForCausalLM = None
    gen_kwargs: dict = None
        
    def __init__(self, mode_name_or_path: str, gen_kwargs: dict = None):
        super().__init__()
        print("正在从本地加载模型...")
        self.tokenizer = AutoTokenizer.from_pretrained(
            mode_name_or_path, trust_remote_code=True
        )
        self.model = AutoModelForCausalLM.from_pretrained(
            mode_name_or_path,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
            device_map="auto"
        ).eval()
        print("完成本地模型的加载")
        
        if gen_kwargs is None:
            gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
        self.gen_kwargs = gen_kwargs
        
    def _call(self, prompt: str, stop: Optional[List[str]] = None,
              run_manager: Optional[CallbackManagerForLLMRun] = None,
              **kwargs: Any) -> str:
        messages = [{"role": "user", "content": prompt}]
        model_inputs = self.tokenizer.apply_chat_template(
            messages, tokenize=True, return_tensors="pt", return_dict=True, add_generation_prompt=True
        )
        generated_ids = self.model.generate(**model_inputs, **self.gen_kwargs)
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs['input_ids'], generated_ids)
        ]
        response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        return response
    
    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """返回用于识别LLM的字典,这对于缓存和跟踪目的至关重要。"""
        return {
            "model_name": "glm-4-9b-chat",
            "max_length": self.gen_kwargs.get("max_length"),
            "do_sample": self.gen_kwargs.get("do_sample"),
            "top_k": self.gen_kwargs.get("top_k"),
        }

    @property
    def _llm_type(self) -> str:
        return "glm-4-9b-chat"

在上述类定义中,我们分别重写了构造函数和 _call 函数: 对于构造函数,我们在对象实例化的一开始加载本地部署的 ChatGLM4 模型,从而避免每一次调用都需要重新加载模型带来的时间浪费; _call 函数是 LLM 类的核心函数,Langchain 会调用改函数来调用LLM,在改函数中,我们调用已实例化模型的 generate 方法,从而实现对模型的调用并返回调用结果。

此外,在实现自定义 LLM 类时,按照 langchain 框架的要求,我们需要定义 _identifying_params 属性。这个属性的作用是返回一个字典,该字典包含了能够唯一标识这个 LLM 实例的参数。这个功能对于缓存和追踪非常重要,因为它能够帮助系统识别不同的模型配置,从而进行有效的缓存管理和日志追踪。

在整体项目中,我们将上诉代码封装为 LLM.py,后续将直接从该文件中引入自定义的 ChatGLM4_LLM 类

调用

然后就可以像使用任何其他的langchain大模型功能一样使用了。

from LLM import ChatGLM4_LLM
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
llm = ChatGLM4_LLM(mode_name_or_path="/root/autodl-tmp/ZhipuAI/glm-4-9b-chat", gen_kwargs=gen_kwargs)
print(llm.invoke("你是谁"))

在这里插入图片描述

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
GLM-4V是一种大型模型,它的全称是Generalized Linear Model-4V。GLM-4V是一种广义线性模型,它是基于广义线性模型(Generalized Linear Model, GLM)的扩展和改进。 GLM-4V的原理如下: 1. 广义线性模型GLM):GLM是一种统计模型,用于建立因变量与自变量之间的关系。它通过将线性回归模型与非线性函数相结合,可以处理不满足正态分布假设的数据。GLM的基本假设是,因变量的分布可以通过一个链接函数与自变量的线性组合相关联。 2. 四个"V":GLM-4V中的四个"V"代表了四个重要的概念,分别是Variation、Variance、Value和Validation。 - Variation(变异性):GLM-4V关注因变量的变异性,通过分析因变量的变异程度来确定模型的拟合程度。 - Variance(方差):GLM-4V考虑了因变量的方差,通过对方差进行建模,可以更好地描述因变量的分布特征。 - Value(价值):GLM-4V关注因变量的价值,通过对因变量的价值进行建模,可以更好地理解因变量对自变量的响应。 - Validation(验证):GLM-4V通过验证模型的拟合程度和预测能力,来评估模型的有效性和可靠性。 3. 模型构建:GLM-4V的模型构建包括以下几个步骤: - 数据准备:包括数据清洗、变量选择和数据转换等。 - 模型选择:选择适当的链接函数和误差分布族,并确定自变量的形式。 - 参数估计:使用最大似然估计或广义最小二乘法等方法,估计模型的参数。 - 模型诊断:对模型进行诊断,检验模型的拟合程度和假设条件是否满足。 - 模型评估:通过交叉验证等方法,评估模型的预测能力和稳定性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值