油桃缺陷检测数据集VOC+YOLO格式559张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)

图片数量(jpg文件个数):559

标注数量(xml文件个数):559

标注数量(txt文件个数):559

标注类别数:2

标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["crack","normal"]

每个类别标注的框数:

crack 框数 = 946

normal 框数 = 1456

总框数:2402

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:暂无

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:

标注例子:

### YOLO模型水果检测数据集下载 对于YOLO模型进行水果识别的任务,可以考虑使用已有的公开数据集来训练模型。以下是一些相关内容: #### 数据集介绍 存在一个名为“水果新鲜程度检测”的数据集,该数据集提供了丰富的标注信息,适用于目标检测任务[^1]。此数据集中包含了多种类型的水果图像及其对应的标签文件,能够满足YOLO模型的需求。 具体来说,这个数据集涵盖了六种不同种类的水果,分别是金冠苹果(Golden Delicious)、绿苹果(Granny Smith)、梨(Pear)、Red Delicious、红色油桃(Red Nectarine)以及黄色桃子(Yellow Peach)[^2]。 #### 数据集获取方式 可以通过访问链接地址 `https://download.csdn.net/download/zhiqingAI/85448544` 来直接下载上述提到的水果新鲜度检测数据集。请注意,在实际操作前确认网络环境允许并遵循资源分享平台的相关规定。 #### 转换至YOLO格式 为了使这些数据适配于YOLO框架下的训练过程,可能需要将原始标注转换成特定格式。通常情况下,每图片对应一个`.txt`文件记录边界框坐标及相关类别编号。下面给出一段Python脚本作为参考实现这一功能: ```python import xml.etree.ElementTree as ET from os import getcwd def convert_annotation(image_id, list_file, classes): in_file = open('annotations/%s.xml' % (image_id)) tree=ET.parse(in_file) root = tree.getroot() for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult)==1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (int(xmlbox.find('xmin').text), int(xmlbox.find('ymin').text), int(xmlbox.find('xmax').text), int(xmlbox.find('ymax').text)) list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id)) sets=[('train'), ('val')] classes = ["GoldenDelicious", "GrannySmith", "Pear", "RedDelicious", "RedNectarine", "YellowPeach"] for image_set in sets: image_ids = open('ImageSets/Main/%s.txt'%(image_set)).read().strip().split() list_file = open('%s.txt'%(image_set), 'w') for image_id in image_ids: list_file.write('data/images/%s.jpg'%(image_id)) convert_annotation(image_id, list_file, classes) list_file.close() ``` 以上代码片段展示了如何读取标准VOC格式的XML标注并将它们转化为适合YOLO使用的TXT格式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值