火山引擎公共云·城市分享会:共享云经验,一起向未来

文章讨论了数智化时代下云计算对企业IT架构的影响,如何借助火山引擎构建高扩展性和低成本的IT架构,特别是通过云原生技术和多云管理来应对挑战。字节跳动和毫末智行的案例展示了火山引擎在数据库、大算力和自动化配送领域的应用及其解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数智化时代的来临,不仅激发了行业对云计算的资源需求,也重构了云计算的技术架构及产品布局,给业务场景带来更多可能性,让云计算成为企业走向高效治理的一剂“良方”。随着业务的多样化、复杂化,企业应该如何借助云计算构建更高扩展性的IT架构,同时平衡成本与效率、应对治理和安全等挑战?11月10日,在北京举办的“乘云·向未来”火山引擎公共云·城市分享会上,火山引擎给出了答案。

当前云计算市场的规模化态势,让众多云计算厂商再次迎来新的拐点。字节跳动基础架构负责人赵鹏伟表示,伴随着字节跳动业务的多样性和复杂性发展,火山引擎基于“敏捷迭代”、“数据驱动”、“体验创新”三大云上增长要素,以“短时间内完成基础设施产品三代演进”和“不断追求规模、技术、运营极致性价比”两大后发优势,为业务增长构建了数字化基石。

多云之下开辟“坦途”

云服务经过多年的演进,已经发展出了多云、混合云、边缘云等多种形态。字节跳动在发展过程中,伴随着业务对底层架构需求的不断增加,也逐渐走向“多云”模式。然而,多云下的云原生演进之路并非坦途,运维复杂度增加、互操作性难、数据管理难度大、成本控制复杂等挑战浮出水面。

面对多云落地中的难点,火山引擎云原生平台负责人沈健认为,“云原生始于对资源的需求,终于对资源效率、运维效率以及业务效率的释放。”为此,火山引擎早在2019年就开始进行集群联邦建设,到2021年正式实现了全场景应用编排和资源管理的标准化、统一化。2023年,火山引擎再次提出“多云管控+多云多活”的解决方案,打造了分布式云原生平台和计算平台体系两大底层算力架构,从多个层面实现多云环境下的高效管理和运营。

业务增速下的大算力进化之道

火山引擎整体的大算力基础设施在高性能计算和存储集群、云原生和计算协同调度、资源池化和在离线融合等方面都具备一定优势。

火山引擎云基础产品负责人罗浩表示,伴随 AI 应用在不同行业生根落地的趋势,火山引擎将以高性价比、高利用率、高开发体验、低运维部署的大算力基础设施,打造更贴合客户场景的整体解决方案。

超大规模数据库技术演进的可行性验证

在基础设施全面“云化”的今天,字节跳动的数据量迎来将近100倍的增长。面对增速如此迅猛的数据规模,火山引擎数据库负责人张雷称,字节数据库团队始终在思考更优秀的数据管理和数据治理之策。

基于字节跳动数据库体系呈现产品多样化、规模化、融合化、智能化特征,火山引擎提供了自研的veDB系列存算分离数据库服务,以及开源托管产品和配套工具;同时,火山引擎通过产品技术创新,在内部打磨类似HTAP、图、分布式KV等多款自研数据库,未来希望把这些好的产品提供给广大客户,帮助其解决企业发展过程中的数据管理难题;也希望通过应用场景方面的融合和基础设施层面的分离和整合,以横纵双融合的系统重塑应用缓存和数据库,为用户带来便捷。

以可信赖的能力携手伙伴迈向“智”高点

作为火山引擎在自动驾驶领域的重要伙伴,毫末智行亮相本次大会。

毫末智行数据智能科学家贺翔分享了最新实践成果。在中国智能辅助驾驶市场大爆发阶段,毫末智行在乘用车辅助驾驶系统、末端物流自动配送车和智能硬件/机器人等多个领域均保持业内第一的优异成绩。其中,面向末端物流自动配送行业打造的“小魔驼”已全新升级至3.0版本,以极致性价比迅速抢占市场。

为了进一步提升小魔驼无人配送的安全运营能力,毫末智行与火山引擎强强联手,基于火山引擎视频云打造了远程驾舱和远程运营平台解决方案,提升末端物流自动配送规模化落地中的安全性和完整性,促进无人配送更安全、更快商业落地。

“内外统一”服务多用户云上增长

经过多阶段的演进,字节跳动基础架构体系已在研发、技术、产品方面形成了完整的解决方案。据火山引擎云基础解决方案负责人王佳毅介绍,字节跳动基础架构核心技术体系包括池化存储ByteStore、统一资源调度Godel等,具备实时推荐、实时计算等特征,并与火山引擎形成了业务无感、资源融合、技术一体的“内外统一”研发体系,更好地承载集团内外业务发展。

云计算规模化成为必然趋势,企业IT架构需要更高可扩展性来承载核心业务快速增长。未来,火山引擎将持续为各行业领域的企业客户提供优质的产品服务,帮助企业客户更好地应对业务规模化之下的IT挑战,助力企业客户突破瓶颈、自由计算、自由增长。

据悉,接下来,火山引擎公共云·城市分享会还将陆续登陆上海和深圳,与更多行业伙伴共同探讨高效用云之道,携手“乘云·向未来”。

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值