N皇后问题
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1
8
5
0
Sample Output
1
92
10
解题思路:
跟做的八皇后一样,一行一行的来,至于超时这个问题,我们只要提前计算好答安保存下来就好了。
代码如下:
#include <iostream>
#include <cstdio>
using namespace std;
int n,tot,k;
int ans[11];
int Cvis[11],Lvis[22],Rvis[22];
void dfs(int r)
{
if(r == n)
{
tot++;
return;
}
for(int c = 0;c < n; c++)
{
if(!Cvis[c] && !Lvis[r+c] && !Rvis[r-c+n-1])
{
Cvis[c] = true;
Lvis[r+c] = true;
Rvis[r-c+n-1] = true;
dfs(r+1);
Cvis[c] = false;
Lvis[r+c] = false;
Rvis[r-c+n-1] = false;
}
}
}
int main()
{
for(int i = 1;i <= 10; i++)
{
n = i;
tot = 0;
dfs(0);
ans[i] = tot;
}
while(~scanf("%d",&k) && k)
{
printf("%d\n",ans[k]);
}
}