Caffe学习笔记(二):Caffe前传与反传、损失函数、调优

本文详细介绍了Caffe框架中的核心概念:前传/反传过程,解释了损失函数在学习中的作用,并探讨了Solver如何通过调整参数来最小化损失。前传自底向上组合层计算,反传自顶向下计算梯度。损失函数衡量网络权重的优劣,Solver协调前向和反向计算以更新参数。后续内容将结合代码深入讨论这些主题。
摘要由CSDN通过智能技术生成

Caffe学习笔记(二):Caffe前传与反传、损失函数、调优

 

        在caffe框架中,前传/反传(forward and backward)是一个网络中最重要的计算过程;损失函数(loss)是学习的驱动,类似于视频编码中的率失真代价,是衡量学习的程度,或者说,学习的目的是找到一个网络权重的集合,使得损失函数最小;Solver是通过协调网络的前向推断计算和反向计算来对参数进行更新,从而达到减小loss的目的。


        下面将对forward and backward、loss、solver分别进行介绍。


1、前传/反传(forward and backward)


        如前所述,前传和反传是一个网络中的最重要的计算过程。

        所谓前传就是:给定的输入计算输出,在前传过程中,caffe组合每一层的计算得到整个模型的计算“函数”;需要注意的是:此过程是一个自底向上的过程。

        所谓反传就是:根据损失来计算梯度从而进行学习,在反传过程中,caffe通过自动求导并反向组合每一层的梯度来计算整个网络的梯度,需要注意的是该过程自顶向下进行。


        在caffe中,Net::Forward()和Net::Backward()方法实现网络的前传和反传,而Layer::Forward()和Layer::Backward()计算每一层的前传和反传。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值