数据挖掘第10周

集成框架:集成多种算法

一、Bagging:民主决议。

  • 如随机森林:对同一输入,取众数作为输出。

  • 优点:通用性好;自动划分测试集;不容易出现过拟合;超参数少一般只有树的数量……

  • 缺点:树太多时,空间复杂度高……

二、Boosting:不断补充:专门处理前一个分类器效果差的样本。

  • 优点:对于基分类器要求低;分类器个数不会太多……

  • 缺点:过拟合现象严重……

AdaBoost

  • 优点:误差必然由上界;几乎不需要调参
  • 缺点:容易陷入局部最优解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值