Target(US)塔吉特审核申请注意事项

【Target(US)塔吉特审核申请注意事项】
Target是美国一家零售公司,该公司成立于1902年,是美国第二大折扣零售商,旗下产业包括百货公司、量贩店、超级购物中心和超市等。
Target致力于负责任的商业行为,希望所有供应商都能够建立一个内部合规计划,以确保工厂和分包商遵守当地法律及尊重人权、环境管理和动物福利。同时也需要遵守Target的道德政策,以高度诚信的方式开展业务。
Target审核通常有社会责任、品质及反恐几种,这次我们主要讲一下社会责任审核/验证申请的要点。

2022年5月1日起,开始接受具备APSCA Full Membership资质审核公司出具的SMETA 4 Pillar报告。在此之前Target只接受包括SGS在内的5家审核公司的SMETA报告。通知中指出,服装、箱包、鞋类工厂首选SLCP或Better Work项目。
审核项目

2020年2月25日起,Target正式通知其全球供应商。
从2020年5月1日起接受以下审核项目报告:
BSCI
Better Work
Fair Trade USA
SLCP
IETP
RBA VAP
SMETA (4 Pillar)

注意事项,在这里特别说一下SMETA项目的要求:
工厂需要申请SMETA 4 pillar审核。
2022年5月1日起,开始接受有APSCA Full Membership资质审核公司的SMETA报告。
需要通过Sedex平台关联客户并分享报告。2022年5月4日起,SMETA审核仅限于Sedex会员(详情请点击阅读《来自Sedex的重要通知:SMETA审核将仅限Sedex会员申请》),所以审核前都需要先完成注册。

需提供的信息:
申请Target的审核,需要填写专用申请表,如已有合作请提供以下订单信息,以便我们汇总给客户。工厂的Factory ID非常重要,Target会以此来识别是否为Target供应商。

如何成为一个合格的Target负责任采购供应商?
由一名经理负责社会和环境合规计划,如培训、工厂监控、整改计划和验证。
在工厂内推行教育和训练计划,预防发生问题。
申请注册一间新工厂之前,先由自身员工或者值得信赖的第三方进行“自我评估”。自我评估是对工厂是否符合Target标准和遵守当地法律的详细审查。
主动将出现的问题告知Target负责任采购团队持续合规监控。
制定强有力的整改计划,以解决发现的任何问题。整改计划应包含问题处理短期计划和防止其复发的长期计划。供应商应确保工厂部门已全面执行纠正措施并保存相应的文件。
在工厂内不断改进招聘和人事档案管理、工资体系和考勤系统机制。

Target希望所有供应商都能够建立一个内部合规计划,以确保工厂和分包商遵守Target的标准以及适用法律和法规。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
粒子群优化(PSO)是一种基于群体智能的优化算法,由James Kennedy和Russell Eberhart于1995年提出,灵感来源于鸟群或鱼群的群体行为 。它通过模拟群体间的协作与竞争,利用个体和群体的经验来迭代求解问题 。PSO常用于优化支持向量机(SVM)的参数,以提升模型性能 。SVM是一种强大的监督学习模型,通过寻找最优超平面实现分类或回归 ,其性能依赖于参数C(惩罚因子)和γ(核函数参数) 。 PSO优化SVM参数的过程如下:首先随机生成一组粒子,每个粒子代表一组SVM参数(C和γ) 。接着,使用这些参数训练SVM模型,并通过测试集评估性能(如准确率或F1分数),作为粒子的适应度值 。然后,根据个体和全局最优解的位置更新粒子的速度和位置 ,速度决定移动方向和速度,位置表示参数组合 。粒子群共享全局最优解信息,推动所有粒子向最优解移动 。重复上述步骤,直至达到预设迭代次数或满足停止条件 。 在实际应用中,PSO-SVM的实现通常包括以下部分:数据预处理(导入、清洗、标准化等) ;PSO算法实现(定义粒子结构、初始化种群、设定优化目标和边界条件) ;SVM模型训练(使用不同参数组合) ;适应度计算(评估模型性能) ;更新规则(根据PSO算法更新速度和位置) ;主循环(多轮迭代,记录全局最优解) ;结果分析(展示最佳参数组合,进行最终预测) 。 PSO优化SVM参数的过程自动高效,可提高模型泛化能力和预测准确性 。对于初学者,这是一个很好的实践案例,有助于理解优化算法在机器学习中的应用 ;对于有经验的开发者,可作为进一步研究和改进的基础,例如探索PSO变体或结合其他优化方法 。
在移动开发领域,Android Studio 是谷歌推出的官方集成开发环境(IDE),专门用于开发 Android 应用。本项目旨在通过 Android Studio 创建一个模仿流行生活分享平台小红书的简单应用。小红书以其强大的社交功能和丰富的用户生成内容而闻名,融合了购物、博客和社交媒体的特点。通过复刻小红书,开发者可以学习构建类似的混合型应用。 1. Android Studio 核心知识点 界面设计:利用 Android Studio 的布局编辑器(可通过 XML 编码或拖放操作)来构建用户界面,涵盖 TextView、ImageView、RecyclerView 等多种组件。 主题与样式:掌握 Material Design 的应用,自定义主题和样式,以实现类似小红书的视觉效果。 Activity 与 Fragment:理解 Activity 和 Fragment 的生命周期,以及它们在多屏幕适配中的作用。 Intent:通过 Intent 实现页面跳转和数据传递。 2. 小红书 App 特性实现 登录注册:实现用户登录和注册功能,可能涉及 OAuth 或自定义认证机制。 数据获取与展示:使用网络请求库(如 Retrofit 或 OkHttp)从服务器获取数据,并通过 RecyclerView 展示,可能采用瀑布流布局。 图片加载:借助图片加载库(如 Glide 或 Picasso)优化图片加载速度和性能。 社交功能:实现评论、点赞、分享等社交功能,涉及数据库操作和网络通信。 动态通知:集成 Firebase Cloud Messaging(FCM)实现即时消息推送。 3. Android SDK 与相关库 Android SDK:熟悉不同版本的 Android API,确保应用的兼容性。 Room Persistence Library:用于本地数据库存储,缓存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值