问题描述
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{p i}={p 0, p 1, …, p n -1},用这列数构造Huffman树的过程如下:
1. 找到{p i}中最小的两个数,设为p a和p b,将p a和p b从{p i}中删除掉,然后将它们的和加入到{p i}中。这个过程的费用记为p a + p b。
2. 重复步骤1,直到{p i}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{p i}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{p i}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{p i}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{p i}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{p i}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
给出一列数{p i}={p 0, p 1, …, p n -1},用这列数构造Huffman树的过程如下:
1. 找到{p i}中最小的两个数,设为p a和p b,将p a和p b从{p i}中删除掉,然后将它们的和加入到{p i}中。这个过程的费用记为p a + p b。
2. 重复步骤1,直到{p i}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{p i}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{p i}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{p i}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{p i}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{p i}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p 0, p 1, …, p n -1,每个数不超过1000。
接下来是n个正整数,表示p 0, p 1, …, p n -1,每个数不超过1000。
输出格式
输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
5 3 8 2 9
样例输出
59
import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;
public class huffman树 {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
ArrayList<Integer> array=new ArrayList<Integer>();
for(int i=0;i<n;i++){
array.add(in.nextInt());
}
int count=0;
int i=0;
while(array.size()!=1){
Collections.sort(array);//将array排序(升序)
int temp=array.get(i)+array.get(++i);//将最小两个数计算出和存入temp
array.set(i, temp);//替换第二大的数,
count+=temp;
array.remove(--i);//删除最小的数
}
System.out.println(count);
}
}