zotero中部署本地ollama大模型读文献(linux系统)

第一步:
本地部署ollama,并启动ollama服务
本地部署相关内容:
​​​​​​https://github.com/ollama/ollama
安装命令(Linux系统):

curl -fsSL https://ollama.com/install.sh | sh

启动Ollama服务:

sudo systemctl start ollama.service


ollama pull deepseek-r1:8b (注意显卡是否满足拉取8b条件,可官网查看)
deepseek-r1
ollama pull bge-m3 (emdding模型)
olllama list查看是否拉取模型成功
浏览器访问 http://127.0.0.1:11434 测试ollama是否启动成功,显示Ollama is running则成功运行。

 第二步:
zotero中安装Awesome GPT插件
安装后成功后,在zotero中找到“编辑——设置“打开GPT插件
进行设置:
http://127.0.0.1:11434
API Key 必填(随便输入即可)
模型填写deepseek-r1:8b
embedding模型中:
http://127.0.0.1:11434/v1/embeddings
key必填 (随意填写)
模型填写bge-m3
(ps:若ollama list中显示bge-m3:latest,填写bge-m3:latest后Test会报错,需要填写bge-m3)
设置完毕
Test (出现图片结果,则配置成功)

第三步:
测试AI
zotero 中打开一篇文献,点击即可使用本地模型进行文献解读

### Zotero DeepSeek 模型本地部署教程 #### 准备工作 为了成功部署Zotero DeepSeek模型,需先安装必要的依赖环境。确保计算机已安装Python 3.x版本以及pip工具。 #### 安装所需软件包 通过命令行执行如下操作来创建虚拟环境并激活它: ```bash python -m venv myenv source myenv/bin/activate # Linux 或 macOS 下 myenv\Scripts\activate.bat # Windows下 ``` 接着,在该环境中安装项目所需的Python库文件: ```bash pip install deepseek zotero-api requests ``` #### 获取API密钥 前往[Zotero官网](https://www.zotero.org/)注册账号,并申请用于访问其服务的应用程序编程接口(API)令牌[^1]。 #### 配置DeepSeek参数 编辑`config.yaml`配置文件以适应个人需求,特别是关于数据库连接字符串部分。此步骤对于建立与Zotero资料库之间的通信至关重要。 ```yaml zotero: api_key: "your_zotero_api_token" user_id: "your_user_id_or_group_id" database: url: "sqlite:///./test.db" # 可根据实际情况调整为其他类型的数据库URL ``` #### 启动应用服务器 一切准备就绪之后,可以通过运行下面这条指令启动Flask Web Server作为前端界面展示平台: ```bash flask run --host=0.0.0.0 --port=5000 ``` 此时应该可以在浏览器地址栏输入http://localhost:5000查看到已经正常工作的Zotero DeepSeek实例页面了。 #### 测试功能完整性 尝试上传几篇文献Zotero账户内,随后刷新网页确认这些条目能否被正确索引和检索出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值