机器学习|决策树

本文讨论了在机器学习中,如何通过线性不可分的数据点构建决策树,利用熵和信息增益评估分法的有效性,以提高分类的稳定性和效率。
摘要由CSDN通过智能技术生成


左图的点是一种线性不可分的情况,无法拿一条直线去将进行分开。
每一个节点都代表一个决策,从而导致节点的分流。
最终的目标肯定是要达到分类。
但取得目标的过程是有所谓的好坏。
在这里插入图片描述
而这个好坏用熵/信息增益来衡量。
熵是一种用于反映系统混乱程度的物理量。
信息增益用于反映新系统和旧系统的熵差。
熵的差值越大,说明这个分法能够导致系统更加稳定,效果更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值