题目
Description
听说NOIP2016大家都考得不错,于是CCF奖励省常中了 K 张变形金刚5的电影票奖励OI队的同学去看电影。可是省常中OI队的同学们共有 N(N >= K)人。于是机智的你想到了一个公平公正的方法决定哪K人去看电影。
N个人排成一圈,按顺时针顺序标号为1 - N,每次随机一个还存活的人的编号,将这个人踢出。继续上述操作,直到剩下K个人。
但这样显然太无聊了,于是小S又想出一个牛逼的方法。
N个人排成一圈,按顺时针顺序标号为1 - N,每次随机一个1 - N的编号,假设随机到的编号是X,如果编号为X人还未踢出,则将这个人踢出,否则看编号为X % N + 1(即顺时针顺序下一个编号)的人是否存活,如果还未踢出则将他踢出,否则继续看编号(X + 1)% N +1的人,如果已被踢出看顺时针的下一个…………,以此类推,直到踢出一个人为止。重复上述操作,直到剩下K个人。
已知小S的编号是Id,问按照小S的方法来他有多少的概率可以不被踢出,成功得到看电影的机会。
Input
第一行包括三个正整数,N,K,Id(1<=K<=N<=10^9,1<=ID<=N )
Output
一行一个最简分数,表示小S可以看到电影的概率。
(如果概率为1或0,请输出1/1或0/1)
Sample Input
2 1 2
Sample Output
1/2
【样例解释】
一共两个人,筛选经过1轮,第1轮每个人被踢出的概率都是等概率的,所以答案是1/2。
Data Constraint
比赛时の想法
一开始觉得这题好难啊,就去做后面的题目了,但是发现后面的题目都挺简单的,就开始重新以一道简单题的思路来审视这道题,发现这个选法对每个人都是公平的,那每个人的概率就是k/n嘛~(注意约分以及k=0的情况)
正解
在上面
var
n,k,x,i,j:longint;
function gcd(x,y:longint):longint;
begin
if y=0 then exit(x) else exit(gcd(y,x mod y));
end;
begin
readln(n,k,x);
if k=0 then
begin
writeln('0/1');
halt;
end;
if n=k then
begin
writeln('1/1');
halt;
end;
x:=gcd(n,k);
writeln(k div x,'/',n div x);
end.