DJI秋招笔试试题解析

在Logistic Regression中加入L1和L2范数可以进行特征选择并防止过拟合。虽然不能直接解决维度灾难问题,但能提高模型的稳定性和准确性。L1正则化导致模型参数稀疏,L2正则化则有助于减少过拟合。Elastic Net结合两者,提供了更好的效果。
摘要由CSDN通过智能技术生成
  1. 在Logistic Regression 中,如果同时加入L1和L2范数,会产生什么效果(     )
  • 可以做特征选择,并在一定程度上防止过拟合
  • 能解决维度灾难问题
  • 能加快计算速度
  • 可以获得更准确的结果

题库

解析:答这道题需要理解加入L1和L2正则化的意义,并且知道同时加入L1L2(即Elastic Net)这种操作

首先为什么要加入L1,L2正则化,是考虑到参数w自身分布的影响。在最小化P(w|x,y)的时候,加入L1,L2正则化项是为了获得精确的使最大似然函数取得最小值的w值。而加入L1,L2也带来一些性质,包括L1正则化会使模型的变量稀疏,L2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值