- 在Logistic Regression 中,如果同时加入L1和L2范数,会产生什么效果( )
- 可以做特征选择,并在一定程度上防止过拟合
- 能解决维度灾难问题
- 能加快计算速度
- 可以获得更准确的结果
解析:答这道题需要理解加入L1和L2正则化的意义,并且知道同时加入L1L2(即Elastic Net)这种操作。
首先为什么要加入L1,L2正则化,是考虑到参数w自身分布的影响。在最小化P(w|x,y)的时候,加入L1,L2正则化项是为了获得精确的使最大似然函数取得最小值的w值。而加入L1,L2也带来一些性质,包括L1正则化会使模型的变量稀疏,L2