SVD详细介绍-理论公式证明及低秩近似和特征降维

第一部分:矩阵的奇异值分解:

矩阵的奇异值分解证明过程中会用到五个定理,先作为补充知识展示这五个定理:

定理一:A是对称矩阵,则不同特征值对应的特征向量是正交的。

证明:设是矩阵A的特征向量,且对应的特征向量,即:

因为A是对称矩阵,则

所以,

则:

因为

所以:

即:是正交的。证毕

————————————————————————————————————————————————————————————————————————————

定理二:矩阵和它的转置具有相同的特征值

证明:因为:

有相同的特征多项式,所以有相同的特征值。

————————————————————————————————————————————————————————————————————————————

定理三:半正定矩阵的特征值均大于等于零

证明:这是半正定矩阵的定义

————————————————————————————————————————————————————————————————————————————

定理四:满足,则称是单位正交矩阵

单位正交矩阵有如下的性质:

————————————————————————————————————————————————————————————————————————————

定理五:若矩阵的秩为r,则秩均为r。

————————————————————————————————————————————————————————————————————————————

补充完以上五个定理,我们正式开始矩阵的奇异值分解的证明。

 

设矩阵,矩阵的秩为,且,则矩阵可以分解为如下形式:

 

也可表示为:

证明:无非就是寻找

显然,且这两个矩阵均是半正定矩阵,且互为转置,且根据定理五,这两个矩阵的秩均为。根据定理二和定理三,这两个矩阵的特征值是相同的,且均大于等于零。我们只用大于零的特征值。设(我们按从大到小排序即:)是它们的不为零的特征值,且对于矩阵对应的单位特征向量为),对于矩阵对应的单位特征向量为),即

其实存在一定的关系,下面就找出这种关系。

因为

所以,的特征向量,又因为也是的特征向量,所以,

又因为

所以:

则:

,

所以,

那么

下面证明

其中代表单位矩阵。

因为是对称矩阵的不同特征值对应的特征向量,根据定理一,我们得出他们是相互正交的,又因为

然后,然后根据定理四,我们便得到

所以:

证毕。

 

矩阵的奇异值分解定理:

设矩阵,秩为,则该矩阵可以分解为:

也可以表示为:

其中:为矩阵(或者)的非零向量,的对应特征向量,的对应特征向量,

 

SVD的第一个作用之低秩近似(Low Rank Approximation):

即用矩阵近似

 

SVD的第二个作用之特征降维(Dimensionality Reduction):

假设特征是按列存储的,即:

其中

我们在低秩近似中已经用近似表示了。

则根据分块矩阵的乘法,我们很容易得到:

令:

因为,是相互正交的,所以根据

显然可以得出,可以近似由,张成,所以我们得出结论:

m维的,可以降到维的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值