第一部分:矩阵的奇异值分解:
矩阵的奇异值分解证明过程中会用到五个定理,先作为补充知识展示这五个定理:
定理一:A是对称矩阵,则不同特征值对应的特征向量是正交的。
证明:设,
是矩阵A的特征向量,且
,
,
为
,
对应的特征向量,即:
,
则
,
因为A是对称矩阵,则
所以,
则:
因为
,
所以:
,
即:和
是正交的。证毕
————————————————————————————————————————————————————————————————————————————
定理二:矩阵和它的转置
具有相同的特征值
证明:因为:
,
即和
有相同的特征多项式,所以有相同的特征值。
————————————————————————————————————————————————————————————————————————————
定理三:半正定矩阵的特征值均大于等于零
证明:这是半正定矩阵的定义
————————————————————————————————————————————————————————————————————————————
定理四:若满足
,则称
是单位正交矩阵
单位正交矩阵有如下的性质:。
————————————————————————————————————————————————————————————————————————————
定理五:若矩阵的秩为r,则
和
秩均为r。
————————————————————————————————————————————————————————————————————————————
补充完以上五个定理,我们正式开始矩阵的奇异值分解的证明。
设矩阵,矩阵的秩为
,且
,则矩阵可以分解为如下形式:
,
也可表示为:
证明:无非就是寻找。
显然,
,且这两个矩阵均是半正定矩阵,且互为转置,且根据定理五,这两个矩阵的秩均为
。根据定理二和定理三,这两个矩阵的特征值是相同的,且均大于等于零。我们只用大于零的特征值。设
(我们按从大到小排序即:
)是它们的不为零的特征值,且对于矩阵
对应的单位特征向量为
(
),对于矩阵
对应的单位特征向量为
(
),即
,
。
其实和
存在一定的关系,下面就找出这种关系。
因为
,
所以,是
的特征向量,又因为
也是
的特征向量,所以,
,
又因为
,
所以:
。
则:
,
所以,
,
那么
下面证明
,
其中代表单位矩阵。
因为是对称矩阵
的不同特征值对应的特征向量,根据定理一,我们得出他们是相互正交的,又因为
,
然后,然后根据定理四,我们便得到
所以:
。
证毕。
矩阵的奇异值分解定理:
设矩阵,秩为
,
,则该矩阵可以分解为:
也可以表示为:
。
其中:为矩阵
(或者
)的非零向量,
为
的对应特征向量,
为
的对应特征向量,
。
SVD的第一个作用之低秩近似(Low Rank Approximation):
,
,
即用矩阵近似
。
SVD的第二个作用之特征降维(Dimensionality Reduction):
假设特征是按列存储的,即:
,
其中,
。
我们在低秩近似中已经用近似表示
了。
则根据分块矩阵的乘法,我们很容易得到:
,
。
令:
。
因为,是相互正交的,所以根据
,
显然可以得出,可以近似由
,张成,所以我们得出结论:
m维的,可以降到
维的
,
。