矩阵低秩近似Eckart-Young Theorem

引理1

U , V \mathbf{U},\mathbf{V} U,V是酉矩阵
∥ U A ∥ 2 = ∥ A V ∥ 2 = ∥ U A V ∥ 2 = ∥ A ∥ 2 \|\mathbf{U}\mathbf{A}\|_2=\|\mathbf{A}\mathbf{V}\|_2=\|\mathbf{U}\mathbf{A}\mathbf{V}\|_2=\|\mathbf{A}\|_2 UA2=AV2=UAV2=A2
证明:
利用 ∥ A ∥ 2 = λ m a x ( A H A ) \|\mathbf{A}\|_2=\sqrt{\lambda_{max}\left(\mathbf{A}^H\mathbf{A}\right)} A2=λmax(AHA) 就很显然了

引理2

A , B ∈ C m × n \mathbf{A},\mathbf{B}\in\mathbb{C}^{m\times n} A,BCm×n, q = min ⁡ { m , n } q=\min\left\{m,n\right\} q=min{m,n}
σ 1 ≥ σ 2 ≥ ⋯ ≥ σ q \sigma_1\ge\sigma_2\ge \cdots\ge\sigma_q σ1σ2σq代表奇异值

σ i + j − 1 ( A + B ) ≤ σ i ( A ) + σ j ( B ) \sigma_{i+j-1}\left(\mathbf{A}+\mathbf{B}\right)\le \sigma_i\left(\mathbf{A}\right)+\sigma_j\left(\mathbf{B}\right) σi+j1(A+B)σi(A)+σj(B)
其中 1 ≤ i , j ≤ q , i + j ≤ q + 1 1\le i,j\le q,i+j\le q+1 1i,jq,i+jq+1
证明:
A , B \mathbf{A},\mathbf{B} A,B做SVD分解
A = V Σ A W H \mathbf{A}=\mathbf{V}\mathbf{\Sigma}_{\mathbf{A}}\mathbf{W}^H A=VΣAWH
B = X Σ B Y H \mathbf{B}=\mathbf{X}\mathbf{\Sigma}_{\mathbf{B}}\mathbf{Y}^H B=XΣBYH

W = ( w 1 , ⋯   , w n ) , Y = ( y 1 , ⋯   , y n ) \mathbf{W}=\left(\mathbf{w}_1,\cdots,\mathbf{w}_n\right),\mathbf{Y}=\left(\mathbf{y}_1,\cdots,\mathbf{y}_n\right) W=(w1,,wn),Y=(y1,,yn)
V = ( w 1 , ⋯   , w m ) , X = ( y 1 , ⋯   , y m ) \mathbf{V}=\left(\mathbf{w}_1,\cdots,\mathbf{w}_m\right),\mathbf{X}=\left(\mathbf{y}_1,\cdots,\mathbf{y}_m\right) V=(w1,,wm),X=(y1,,ym)

S ′ = span ⁡ { w i , ⋯   , w n } \mathbf{S}'=\operatorname{span}\left\{\mathbf{w}_i,\cdots,\mathbf{w}_n\right\} S=span{wi,,wn}
S ′ ′ = span ⁡ { y i , ⋯   , y n } \mathbf{S}''=\operatorname{span}\left\{\mathbf{y}_i,\cdots,\mathbf{y}_n\right\} S′′=span{yi,,yn}
注意到
v = dim ⁡ ( S ′ ∩ S ′ ′ ) = dim ⁡ ( S ′ ) + dim ⁡ ( S ′ ′ ) − dim ⁡ ( S ′ ∪ S ′ ′ ) = n − i + 1 + n − j + 1 − dim ⁡ ( S ′ ∪ S ′ ′ ) ≥ n − i + 1 + n − j + 1 − n = n − i + 1 − j + 1 ≥ 1 \begin{aligned} v&=\operatorname{dim}\left(\mathbf{S}'\cap\mathbf{S}''\right)\\ &=\operatorname{dim}\left(\mathbf{S}'\right)+\operatorname{dim}\left(\mathbf{S}''\right)-\operatorname{dim}\left(\mathbf{S}'\cup\mathbf{S}''\right)\\ &=n-i+1+n-j+1-\operatorname{dim}\left(\mathbf{S}'\cup\mathbf{S}''\right)\\ &\ge n-i+1+n-j+1-n\\ &=n-i+1-j+1\\ &\ge1 \end{aligned} v=dim(SS′′)=dim(S)+dim(S′′)dim(SS′′)=ni+1+nj+1dim(SS′′)ni+1+nj+1n=ni+1j+11
利用Min-max theorem
n − i + 1 + n − j + 1 − v = dim ⁡ ( S ′ ∪ S ′ ′ ) < = n ⇒ n − v + 1 ≤ i + j − 1 n-i+1+n-j+1-v=\operatorname{dim}\left(\mathbf{S}'\cup\mathbf{S}''\right)<=n\Rightarrow n-v+1\le i+j-1 ni+1+nj+1v=dim(SS′′)<=nnv+1i+j1
所以
σ i + j − 1 ( A + B ) ≤ σ n − v + 1 ( A + B ) = min ⁡ S ∈ C dim ⁡ ( S ) = v max ⁡ x ∈ S ∥ x ∥ = 1 ∥ ( A + B ) x ∥ ≤ max ⁡ x ∈ S ′ ∩ S ′ ′ ∥ x ∥ = 1 ∥ ( A + B ) x ∥ ≤ max ⁡ x ∈ S ′ ∩ S ′ ′ ∥ x ∥ = 1 ∥ A x ∥ + max ⁡ x ∈ S ′ ∩ S ′ ′ ∥ x ∥ = 1 ∥ B x ∥ ≤ max ⁡ x ∈ S ′ ∥ x ∥ = 1 ∥ A x ∥ + max ⁡ x ∈ S ′ ′ ∥ x ∥ = 1 ∥ B x ∥ = σ i ( A ) + σ j ( B ) \begin{aligned} \sigma_{i+j-1}\left(\mathbf{A}+\mathbf{B}\right)&\le\sigma_{n-v+1}\left(\mathbf{A}+\mathbf{B}\right)\\ &=\min_{\mathbf{S}\in\mathbb{C}\atop \operatorname{dim}\left(\mathbf{S}\right)=v}\max_{\mathbf{x}\in\mathbf{S}\atop\|\mathbf{x}\|=1}\|\left(\mathbf{A}+\mathbf{B}\right)\mathbf{x}\|\\ &\le\max_{\mathbf{x}\in\mathbf{S}'\cap \mathbf{S}''\atop\|\mathbf{x}\|=1}\|\left(\mathbf{A}+\mathbf{B}\right)\mathbf{x}\|\\ &\le\max_{\mathbf{x}\in\mathbf{S}'\cap \mathbf{S}''\atop\|\mathbf{x}\|=1}\|\mathbf{A}\mathbf{x}\|+\max_{\mathbf{x}\in\mathbf{S}'\cap \mathbf{S}''\atop\|\mathbf{x}\|=1}\|\mathbf{B}\mathbf{x}\|\\ &\le\max_{\mathbf{x}\in\mathbf{S}'\atop\|\mathbf{x}\|=1}\|\mathbf{A}\mathbf{x}\|+\max_{\mathbf{x}\in\mathbf{S}''\atop\|\mathbf{x}\|=1}\|\mathbf{B}\mathbf{x}\|\\ &=\sigma_i\left(\mathbf{A}\right)+\sigma_j\left(\mathbf{B}\right) \end{aligned} σi+j1(A+B)σnv+1(A+B)=dim(S)=vSCminx=1xSmax(A+B)xx=1xSS′′max(A+B)xx=1xSS′′maxAx+x=1xSS′′maxBxx=1xSmaxAx+x=1xS′′maxBx=σi(A)+σj(B)

Eckart-Young Theorem

设矩阵 A \mathbf{A} A有SVD分解 A = U Σ V T \mathbf{A}=\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T A=VT,其中 U , V \mathbf{U},\mathbf{V} U,V为正交矩阵
k < r = rank ⁡ ( A ) k<r=\operatorname{rank}\left(\mathbf{A}\right) k<r=rank(A)
A k = ∑ i = 1 k σ i u i v i T \mathbf{A}_k=\sum_{i=1}^{k}\sigma_i\mathbf{u}_i\mathbf{v}_i^T Ak=i=1kσiuiviT
其中 σ i \sigma_i σi A \mathbf{A} A的奇异值,设 A \mathbf{A} A p p p个奇异值
σ 1 ≥ σ 2 ≥ ⋯ ≥ σ r > σ r + 1 = ⋯ = σ p = 0 \sigma_1\ge \sigma_2\ge \cdots\ge \sigma_r>\sigma_{r+1}=\cdots=\sigma_p=0 σ1σ2σr>σr+1==σp=0

min ⁡ rank ⁡ ( B ) = k ∥ A − B ∥ 2 = ∥ A − A k ∥ 2 = σ k + 1 \min_{\operatorname{rank}\left(\mathbf{B}\right)=k}\|\mathbf{A}-\mathbf{B}\|_2=\|\mathbf{A}-\mathbf{A}_k\|_2=\sigma_{k+1} rank(B)=kminAB2=AAk2=σk+1
min ⁡ rank ⁡ ( B ) = k ∥ A − B ∥ F = ∥ A − A k ∥ F = ∑ i = k + 1 p σ i 2 \min_{\operatorname{rank}\left(\mathbf{B}\right)=k}\|\mathbf{A}-\mathbf{B}\|_F=\|\mathbf{A}-\mathbf{A}_k\|_F=\sqrt{\sum_{i=k+1}^{p}\sigma_i^2} rank(B)=kminABF=AAkF=i=k+1pσi2

证明

二范数形式

A = ∑ i = 1 p σ i u i v i T \mathbf{A}=\sum_{i=1}^{p}\sigma_i\mathbf{u}_i\mathbf{v}_i^T A=i=1pσiuiviT
A k = ∑ i = 1 k σ i u i v i T \mathbf{A}_k=\sum_{i=1}^{k}\sigma_i\mathbf{u}_i\mathbf{v}_i^T Ak=i=1kσiuiviT
A − A k \mathbf{A}-\mathbf{A}_k AAk的前 k k k个奇异值为0,剩下的 p − k p-k pk个奇异值为 σ k + 1 , ⋯   , σ p \sigma_{k+1},\cdots,\sigma_{p} σk+1,,σp
因为 ∥ A ∥ 2 = σ 1 = σ m a x \|\mathbf{A}\|_2=\sigma_1=\sigma_{max} A2=σ1=σmax
于是 ∥ A − A k + 1 ∥ 2 = σ k + 1 \|\mathbf{A}-\mathbf{A}_{k+1}\|_2=\sigma_{k+1} AAk+12=σk+1

接着证明其他的解>=最优解
因为 rank ⁡ ( B ) = k \operatorname{rank}\left(\mathbf{B}\right)=k rank(B)=k
dim ⁡ N ( B ) = n − k \operatorname{dim}N\left(\mathbf{B}\right)=n-k dimN(B)=nk
于是存在 n − k n-k nk个标准正交向量 x 1 , ⋯   , x n − k \mathbf{x}_1,\cdots,\mathbf{x}_{n-k} x1,,xnk,使得
N ( B ) = s p a n { x 1 , ⋯   , x n − k } N\left(\mathbf{B}\right)=span\left\{\mathbf{x}_1,\cdots,\mathbf{x}_{n-k}\right\} N(B)=span{x1,,xnk}
又因为
dim ⁡ s p a n { x 1 , ⋯   , x n − k } + dim ⁡ s p a n { v 1 , ⋯   , v k + 1 } = n + 1 > n \operatorname{dim}span\left\{\mathbf{x}_1,\cdots,\mathbf{x}_{n-k}\right\}+\operatorname{dim}span\left\{\mathbf{v}_1,\cdots,\mathbf{v}_{k+1}\right\}=n+1>n dimspan{x1,,xnk}+dimspan{v1,,vk+1}=n+1>n
所以
s p a n { x 1 , ⋯   , x n − k } ∩ s p a n { v 1 , ⋯   , v k + 1 } ≠ { 0 } span\left\{\mathbf{x}_1,\cdots,\mathbf{x}_{n-k}\right\}\cap span\left\{\mathbf{v}_1,\cdots,\mathbf{v}_{k+1}\right\}\neq\left\{0\right\} span{x1,,xnk}span{v1,,vk+1}={0}
存在 z ( ∥ z ∥ = 1 ) \mathbf{z}\left(\|\mathbf{z}\|=1\right) z(z=1),使得 B z = 0 \mathbf{Bz}=0 Bz=0 z ∈ s p a n { v 1 , ⋯   , v k + 1 } \mathbf{z}\in span\left\{\mathbf{v}_1,\cdots,\mathbf{v}_{k+1}\right\} zspan{v1,,vk+1}
z = ∑ i = 1 k + 1 k i v i \mathbf{z}=\sum_{i=1}^{k+1}k_i\mathbf{v}_i z=i=1k+1kivi并且 ∑ i = 1 k + 1 k i 2 = 1 \sum_{i=1}^{k+1}k_i^2=1 i=1k+1ki2=1

∥ A − B ∥ 2 = ∥ A − B ∥ 2 ∥ z ∥ ≥ ∥ ( A − B ) z ∥ = ∥ A z ∥ = ∥ U Σ V T z ∥ = ∥ Σ V T z ∥ = ∑ i = 1 p ( σ i v i T z ) 2 = ∑ i = 1 k + 1 ( σ i v i T z ) 2 ≥ σ k + 1 ∑ i = 1 k + 1 ( v i T z ) 2 = σ k + 1 ∑ i = 1 k + 1 k i 2 = σ k + 1 \begin{aligned} &\|\mathbf{A}-\mathbf{B}\|_2\\ =&\|\mathbf{A}-\mathbf{B}\|_2\|\mathbf{z}\|\\ \ge&\|\left(\mathbf{A}-\mathbf{B}\right)\mathbf{z}\|\\ =&\|\mathbf{Az}\|\\ =&\|\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{z}\|\\ =&\|\mathbf{\Sigma}\mathbf{V}^T\mathbf{z}\|\\ =&\sum_{i=1}^{p}\left(\sigma_i\mathbf{v}_i^T\mathbf{z}\right)^2\\ =&\sum_{i=1}^{k+1}\left(\sigma_i\mathbf{v}_i^T\mathbf{z}\right)^2\\ \ge&\sigma_{k+1}\sum_{i=1}^{k+1}\left(\mathbf{v}_i^T\mathbf{z}\right)^2\\ =&\sigma_{k+1}\sum_{i=1}^{k+1}k_i^2\\ =&\sigma_{k+1} \end{aligned} ========AB2AB2z(AB)zAzVTzΣVTzi=1p(σiviTz)2i=1k+1(σiviTz)2σk+1i=1k+1(viTz)2σk+1i=1k+1ki2σk+1

F范数形式

利用引理2
∥ A − A k ∥ F 2 = ∑ i = k + 1 r σ i ( A ) = ∑ i = k + 1 r σ i ( A − B + B ) ≤ ∑ i = k + 1 r ( σ i − k ( A − B ) + σ k + 1 ( B ) ) = ∑ i = k + 1 r σ i − k ( A − B ) ≤ ∑ i = 1 r − k σ i ( A − B ) ≤ ∥ A − B ∥ F 2 \begin{aligned} &\|\mathbf{A}-\mathbf{A}_k\|_F^2\\ =&\sum_{i=k+1}^r\sigma_i\left(\mathbf{A}\right)\\ =&\sum_{i=k+1}^r\sigma_i\left(\mathbf{A}-\mathbf{B}+\mathbf{B}\right)\\ \le&\sum_{i=k+1}^r\left(\sigma_{i-k}\left(\mathbf{A}-\mathbf{B}\right)+\sigma_{k+1}\left(\mathbf{B}\right)\right)\\ =&\sum_{i=k+1}^r\sigma_{i-k}\left(\mathbf{A}-\mathbf{B}\right)\\ \le&\sum_{i=1}^{r-k}\sigma_{i}\left(\mathbf{A}-\mathbf{B}\right)\\ \le&\|\mathbf{A}-\mathbf{B}\|_F^2 \end{aligned} ===AAkF2i=k+1rσi(A)i=k+1rσi(AB+B)i=k+1r(σik(AB)+σk+1(B))i=k+1rσik(AB)i=1rkσi(AB)ABF2
所以成立

参考:https://zhuanlan.zhihu.com/p/361938622

  • 8
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
DTLZ3是一个多目标优化问题,其MATLAB代码如下: ``` function [F, G] = DTLZ3(x, M) % DTLZ3 test problem % x : design variable vector % M : number of objectives % F : objective vector % G : constraint vector % % The problem has M-1 constraints. The first M-1 objectives are % unconstrained, and the last one is constrained. % % Example: % [F, G] = DTLZ3([0.5, 0.5], 3); % % References: % [1] Kalyanmoy Deb and Lothar Thiele and Marco Laumanns and Eckart Zitzler % "Scalable Multi-Objective Optimization Test Problems" % CEC 2002, p. 825 - 830, IEEE Press, 2002. % [2] Kalyanmoy Deb and Samir Agrawal and Amrit Pratap and T Meyarivan % "A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II" % IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002. n = length(x); k = n - M + 1; g = sum((x(M:end) - 0.5).^2); theta = zeros(1, M-1); for i = 1:M-1 theta(i) = pi / (4 * (1 + g)) * (1 + 2 * g * x(i)); end F = zeros(1, M); for i = 1:M F(i) = (1 + g) * cos(prod(theta(1:i-1))) * (i > 1) ... * sin(theta(i)); end G = []; end ``` 其中,输入参数`x`是决策变量向量,`M`是目标函数个数,输出参数`F`是目标函数向量,`G`是约束向量。 该函数实现了DTLZ3多目标优化测试问题的目标函数计算。对于该问题,前`M-1`个目标函数是无约束的,最后一个目标函数是有约束的。函数中,首先计算出一个中间变量`g`,然后计算出一个参数向量`theta`,最后计算出目标函数向量`F`。具体的计算过程可以参考参考文献[1]和[2]。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值