Python:图像处理中img[:,:,::-1]是什么意思?

我们经常在图像预处理中会看到类似如下代码

img = cv2.imread("img_path")
img = img[:,:,::-1].transpose(2, 0, 1)

上述两句到底是什么含义呢?我们今天就来解决这个问题。

首先需要明白一点,我们通过cv2读图片时,数据读取的通道顺序是bgr,并且是height, width, channel的排列方式。

所以切开上述第二行代码来看:

  • img[:,:,::-1]也就是我们任意不改变width维的方式,也不改变height维的方式,仅仅改变channel维的方式,并且是倒序排列,原本的bgr排列方式经过倒序就变成了rgb的通道排列方式。

  • 第二个transpose我们也经常会在caffe和pytorch中用到,因为这两个的输入顺序NxCxHxW,我们将图片从HxWxC改为CxHxW的形式。

拓展:如果img[::-1, :, :]其实是对图片进行上下翻转, img[:,::-1,:]是对图像进行左右翻转

  • 一个小小的代码实例
a = np.array([[[0, 1], [1, 2], [2, 3]], [[3, 4], [4, 5], [5, 6]]])
print(a)
[[[0 1]
  [1 2]
  [2 3]]
 [[3 4]
  [4 5]
  [5 6]]]

b = a[:,:,::-1]
print(b.shape)
(2, 3, 2)
print(b)
[[[1 0]
  [2 1]
  [3 2]]
 [[4 3]
  [5 4]
  [6 5]]]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值