数论概论读书笔记 9.同余式、幂与费马小定理

同余式、幂与费马小定理

前面我们讨论了关于同余式、同余方程的一些性质

小结一下,互质这个条件我觉得很重要

①对于 acbc(mod m) a c ≡ b c ( m o d   m ) 如果 gcd(c,m)=1 g c d ( c , m ) = 1 可以消去c 得到 ab(mod m) a ≡ b ( m o d   m )

②对于同余方程 axc(mod m) a x ≡ c ( m o d   m ) gcd(a,m)=1 g c d ( a , m ) = 1 ,同余式恰好有一个解 (c=1,x即为a的模m下的数论逆元 。显然只有a,m互质时,a才有逆元)

之前我们研究的是两个数相乘取模后之间的性质,现在考虑另一个操作,即

取整数a,考虑它的幂 a,a2,a3,..., a , a 2 , a 3 , . . . , 模m.

在这些幂中存在某种规律吗?我们先考虑m为素数的情况,这时往往能有更好的“模式”,这种现象在数论中(尤其在同余理论中)很普遍。(素数有个很好的性质是,与所有不是它倍数的数互质,这样子既有互质的性质,且模数又为素数) 而正如开始所示,在互质下,往往有很好的结论。

先对素数p=3,5,7 列出整数a=0,1,2,…和一些幂去模p 看来需要三个二维表,找一下“模式”

我们发现 a2(mod 3)a4(mod 5) a 2 ( m o d   3 ) a 4 ( m o d   5 ) a6(mod 7) a 6 ( m o d   7 ) 值均为1(a>0)

取更大的素数p=11发现 a101(mod 11) a 10 ≡ 1 ( m o d   11 ) 在a=1,2,3,4…,10时都是成立

由此可得到下述猜想

ap11(mod p),1a<p a p − 1 ≡ 1 ( m o d   p ) , 1 ⩽ a < p

非要在这个区间吗?细想是不用的,只要 a a 不是p的倍数即可

这就是著名的费马小定理(1640年提出)

费马小定理描述了有关大数的一个令人惊讶的事实

定理9.1(费马小定理). 设p是素数,a是任意整数且pa ap11(mod p) a p − 1 ≡ 1 ( m o d   p )

证明 (详细书本p44)

引理9.2. p p 是素数,a是任何整数且 pa 则数

a,2a,3a,...,(p1)a(modp) a , 2 a , 3 a , . . . , ( p − 1 ) a ( m o d p )

与数
1,2,3,...,(p1)(modp) 1 , 2 , 3 , . . . , ( p − 1 ) ( m o d p )

相同,尽管它们的次序不同。 引理9.2的证明再次用到 素数整除性质 ,以及鸽巢原理。

证明:数列 a,2a,3a,...,(p1)a a , 2 a , 3 a , . . . , ( p − 1 ) a 包含 p1 p − 1 个数,显然没有一个数被 p p 整除 ,假设从中取出两个数ja和ka是关于p同余的,即p|(jk)a 又p是素数且p不整除a,所以p整除 (jk) ( j − k ) 但是 |jk|<p1 | j − k | < p − 1 所以 jk=0 j − k = 0 j=k j = k

这表明,这p-1个数模p不同 由于任何数mod p仅有 p1 p − 1 个不同的非零值,证毕。

利用该引理,即可完成对费马小定理的证明,可得到

ap1(p1)!(p1)!(modp) a p − 1 ⋅ ( p − 1 ) ! ≡ ( p − 1 ) ! ( m o d p )

由于 (p1)! ( p − 1 ) ! 与p互质(显然除了1没有其它公共因子了),可以消去它( 开头有提到这个性质) 则 ap11(mod p) a p − 1 ≡ 1 ( m o d   p )

证毕。

使用费马小定理还可以进行素数测试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值