ID3和C4.5算法

算法:

ID3算法

输入:训练数据集 D ,特征集 A,阈值 ϵ
输出:决策树 T
(1) 若 D 中所有实例属于同一类 Ck,则 T 为单结点树,并将类 Ck 作为该节点的类标记,返回 T
(2) 若 A= ,则 T 为单结点树,并将 D 中实例数最大的类 Ck 作为该节点的类标记,返回 T ;
(3) 否则,计算 A 中各特征对 D信息增益,选择信息增益最大的特征 Ag
(4) 如果 Ag 的信息增益小于阈值 ϵ ,则置 T 为单节点树,并将 D 中实例数最大的类 Ck 作为该节点的类标记,返回 T
(5) 否则,对 Ag 中的每一可能值 ai ,依 Ag=ai D 分割为若干非空子集 Di,将 Di 中实例最大的类作为标记,构建子结点,由结点及其子结点构成树 T ,返回 T
(6) 对第 i 个子结点,以 Di 为训练集,以 A{Ag} 为特征集,递归地调用步(1)~步(5),得到子树 Ti ,返回 Ti

C4.5算法

将 ID3 中信息增益换位信息增益比即为C4.5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值