神经网络的学习

  • 神经网络中的符号确认

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FpVsby1F-1595769270349)(C:\Users\qingbaobao\AppData\Roaming\Typora\typora-user-images\image-20200725200242463.png)]

  • 从输入层到第一层的信号传递

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0s9TVfeg-1595769270352)(C:\Users\qingbaobao\AppData\Roaming\Typora\typora-user-images\image-20200725201352096.png)]

使用矩阵的乘法计算,则可以将第1层的加权和表示成A(1)= XW(1)+ B(1)

W2 = np.array([[0.1, 0.4], [0.2, 0.5][0.3, 0.6]])
B2 = np.array([0.10.2])
print (Z1.shape) # (3,)
print (W2.shape) # (3, 2)
print (B2.shape) # (2,)
A2 = np.dot(Z1, W2) + B2
Z2 = sigmoid(A2)

sigmoid(A2)






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值