- 神经网络中的符号确认
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FpVsby1F-1595769270349)(C:\Users\qingbaobao\AppData\Roaming\Typora\typora-user-images\image-20200725200242463.png)]
- 从输入层到第一层的信号传递
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0s9TVfeg-1595769270352)(C:\Users\qingbaobao\AppData\Roaming\Typora\typora-user-images\image-20200725201352096.png)]
使用矩阵的乘法计算,则可以将第1层的加权和表示成A(1)= XW(1)+ B(1)
W2 = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
B2 = np.array([0.1, 0.2])
print (Z1.shape) # (3,)
print (W2.shape) # (3, 2)
print (B2.shape) # (2,)
A2 = np.dot(Z1, W2) + B2
Z2 = sigmoid(A2)
sigmoid(A2)