自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 KNN算法

跟着Udacity课程学完了无人驾驶第一个term,本来想深入研究一下机器视觉,但是视觉方向不能很好地与工作项目契合,所以决定先巩固一下传统机器学习算法。这个系列基于《机器学习实战》和《统计学系方法》展开,既有理论推导,又有代码实例,这样督促自己形成完备的知识体系。简介  KNN(k-nearest neighbour),也成为k近邻算法,是一种最简单实用的机器学习分类算法。该算法本质是通过距离函数

2018-04-17 11:06:16 490

原创 无人驾驶:Term-1-p5-vehicle-detection

# 简介  p5从车道检测升级为车辆检测,课程目的是检测行驶过程中遇到的车辆,属于目标检测范畴。这篇文章主要介绍如何使用传统计算机视觉方法进行车辆识别,比较基础。当然实现车辆识别的方案还有其他高大的方案,如yolo等,后面我会开另一篇文章介绍基于深度学习的车辆检测方案。# 处理流程  本节课程处理流程如下图所示 # HOG特征提取  梯度直方图(Hist...

2018-04-12 10:25:45 688

原创 无人驾驶:Term-1-p4-advanced-lane-lines

简介   p4也是车道检测,可以说是p1的升级版。p1只是使用了简单的边缘检测和直线检测进行直线车道信息提取,并未考虑摄像头造成的畸变以及车道不是直线的时候如何进行车道检测,这节课在之前的基础上进行了延伸,过程中会用到更多计算机视觉处理技术。处理流程   处理流程如下所示: 棋盘标定  在使用摄像设备进行图像拍摄的时候往往会有畸变误差,这些畸变误差分为两类:径...

2018-04-11 21:43:00 732

原创 无人驾驶:Term-1-p2-traffic-sign-classifier

简介  Term-1第二节课是进行交通标志分类,数据集主要来自于German Traffic Sign,包含了42种交通标志,通过深度学习网络进行分类。环境准备python 2.7numpyscikit-learntensorflowkeras处理流程  处理流程如下图所示 数据读取  我们拿到的数据集是一系列交通标志图像,每个类别的交通...

2018-04-10 12:18:51 1033

原创 无人驾驶:Term-1 p1 lane-detection

简介  Udacity是硅谷的一个在线教育网站,主要以介绍AI技术为主,除了基本的课程录像还会有专业老师进行代码review,通过课程会颁发nano degree。其中最为火爆的一门课程就是自动驾驶课程CarNd,这门课程由简入繁分了三个term,第一个term主要是以机器视觉识别道路、交通标志为主,需要掌握基本的深度学习和机器视觉知识;第二个term是介绍传感器以及使用卡尔曼滤波进行定位和速...

2018-04-09 20:04:27 1422

原创 线性模型(三)--ridge、lasso、ElasticNet回归

在使用机器学习方法进行预测时,往往会出现这种情况:训练出的模型在训练集上的效果很好,但是在测试集上的效果很差,这种情况称为过拟合;如果模型本身在训练集上的效果就很差,这种情况称之为欠拟合。为了防止过拟合的现象出现,学者对线性回归进行了优化,于是产生了ridge、lasso还有ElasticNet回归,下面我们分别介绍这三种回归。首先让我们了解一下ridge回归。在线性回归(二)--线性回归公式

2017-02-13 22:43:11 10953 1

原创 线性模型(二)--对线性回归的几点思考

上一节我们推导了线性回归求解参数的过程,然而仅仅掌握理论推导是远远不够的,还需要理解模型的意义。本节主要讨论线性回归与广义线性模型的关系以及线性回归损失函数的意义。我们假设,则有                                           (1)由第一节可知,,,。由此可知,线性回归是基于高斯分布的。在上一节中,我

2017-02-09 19:25:29 1497 2

原创 线性模型(二)-- 线性回归公式推导

我们在初中学习线性方程的时候就已经接触过回归的相关概念,在这里简单介绍一下机器学习中的“回归”,机器学习的目的有两个:回归和分类,回归是解决连续数据的预测问题,而分类是为了解决离散数据的预测问题。线性回归是机器学习算法中最简单的算法之一,它是监督学习的一种算法,主要思想是在给定训练集上学习得到一个线性函数,在损失函数的约束下,求解相关系数,最终在测试集上测试模型的回归效果。线性模型的形式如下

2017-02-08 19:36:29 18870 4

原创 线性模型(一)--广义线性模型(GLM)简介

我们在初中学习线性方程的时候就已经接触过回归的相关概念,在这里简单介绍一下机器学习中的“回归”,机器学习的目的有两个:回归和分类,回归是解决离散数据的预测问题,而分类是为了解决连续数据的预测问题。线性回归是机器学习算法中最简单的算法之一,由线性回归可以衍生出很多其他的算法,例如:lasso回归,ridge回归,logistic回归,softmax回归等。线性回归是监督学习的一种算法,主要思想是在给

2017-02-04 17:12:07 7096

原创 博客简介

今天是大年初七--立春的日子,为了摆脱家中舒适的环境,我提前回到了帝都,想着抓紧时间对机器学习的学习过程进行整理,一来将自己的所学和大家分享,二来巩固知识,与网友一起发现对知识理解的不足之处。由于本人是初学者,所以本系列博客也是针对初学者,会细化一些公式推导或者工具包的使用,希望各位大牛别嫌水哈,欢迎多提意见。下面简单介绍一下自己的学习之路,也算是对过去的一个总结吧。本人本科研究生所学专业都是通信...

2017-02-03 15:15:55 583

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除