无人驾驶
文章平均质量分 89
小建儿的小站
这个作者很懒,什么都没留下…
展开
-
无人驾驶:Term-1 p1 lane-detection
简介 Udacity是硅谷的一个在线教育网站,主要以介绍AI技术为主,除了基本的课程录像还会有专业老师进行代码review,通过课程会颁发nano degree。其中最为火爆的一门课程就是自动驾驶课程CarNd,这门课程由简入繁分了三个term,第一个term主要是以机器视觉识别道路、交通标志为主,需要掌握基本的深度学习和机器视觉知识;第二个term是介绍传感器以及使用卡尔曼滤波进行定位和速...原创 2018-04-09 20:04:27 · 1422 阅读 · 0 评论 -
无人驾驶:Term-1-p2-traffic-sign-classifier
简介 Term-1第二节课是进行交通标志分类,数据集主要来自于German Traffic Sign,包含了42种交通标志,通过深度学习网络进行分类。 环境准备 python 2.7 numpy scikit-learn tensorflow keras 处理流程 处理流程如下图所示 数据读取 我们拿到的数据集是一系列交通标志图像,每个类别的交通...原创 2018-04-10 12:18:51 · 1032 阅读 · 0 评论 -
无人驾驶:Term-1-p4-advanced-lane-lines
简介 p4也是车道检测,可以说是p1的升级版。p1只是使用了简单的边缘检测和直线检测进行直线车道信息提取,并未考虑摄像头造成的畸变以及车道不是直线的时候如何进行车道检测,这节课在之前的基础上进行了延伸,过程中会用到更多计算机视觉处理技术。 处理流程 处理流程如下所示: 棋盘标定 在使用摄像设备进行图像拍摄的时候往往会有畸变误差,这些畸变误差分为两类: 径...原创 2018-04-11 21:43:00 · 730 阅读 · 0 评论 -
无人驾驶:Term-1-p5-vehicle-detection
# 简介 p5从车道检测升级为车辆检测,课程目的是检测行驶过程中遇到的车辆,属于目标检测范畴。这篇文章主要介绍如何使用传统计算机视觉方法进行车辆识别,比较基础。当然实现车辆识别的方案还有其他高大的方案,如yolo等,后面我会开另一篇文章介绍基于深度学习的车辆检测方案。 # 处理流程 本节课程处理流程如下图所示 # HOG特征提取 梯度直方图(Hist...原创 2018-04-12 10:25:45 · 687 阅读 · 0 评论