无人驾驶:Term-1-p5-vehicle-detection

本篇博客介绍了如何使用传统计算机视觉技术进行无人驾驶中的车辆检测,涉及滑动窗口、图像金字塔和非最大抑制等方法。在实际操作中,效果在p5-vehicle-detection中展示。同时提到,深度学习在目标检测中的应用将在后续文章中单独探讨。
摘要由CSDN通过智能技术生成
# 简介   p5从车道检测升级为车辆检测,课程目的是检测行驶过程中遇到的车辆,属于目标检测范畴。这篇文章主要介绍如何使用传统计算机视觉方法进行车辆识别,比较基础。当然实现车辆识别的方案还有其他高大的方案,如yolo等,后面我会开另一篇文章介绍基于深度学习的车辆检测方案。 # 处理流程   本节课程处理流程如下图所示
# HOG特征提取   梯度直方图(Histogram of Oriented Gradient),简称HOG,它是一种特征描述符。其原理是把图像分成很多个部分,然后计算每个部分的梯度,HOG特征描述符能为特征匹配和目标检测提供非常重要的信息。   为了判断是否是车辆,我们需要分别提取车辆的HOG和非车辆物体的HOG。这里我们使用skimage的hog方法进行图像的特征提取,经过特征提取后的效果如下
  贴上这部分代码
import cv2
import numpy as np
from skimage.feature import hog
import glob
import matplotlib.pyplot as plt

#读取car data
def load_car_data():
    vehicles = glob.glob('./vehicles/*/*.png')
    return vehicles
#读取non car data
def load_non_car_data():
    non_vehicles = glob.glob('./non-vehicles/*/*.png')
    return non_vehicles

#提取HOG特征
def extract_feature
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值