无人驾驶:Term-1-p2-traffic-sign-classifier

这篇博客介绍了使用深度学习对德国交通标志进行分类的项目。内容包括环境准备、处理流程、数据读取和处理、模型构建与训练,以及效果评估。在未精细调整的情况下,模型在测试集上达到了约99%的准确率。
摘要由CSDN通过智能技术生成

简介

  Term-1第二节课是进行交通标志分类,数据集主要来自于German Traffic Sign,包含了42种交通标志,通过深度学习网络进行分类。

环境准备

  • python 2.7
  • numpy
  • scikit-learn
  • tensorflow
  • keras

处理流程

  处理流程如下图所示


处理流程

数据读取

  我们拿到的数据集是一系列交通标志图像,每个类别的交通标志放在了同一个文件夹下,并且有一个csv文件用于描述每个交通标志图片的ROI区域和该标志所属类别。下载图像的时候网站提供了一份用于数据处理的python程序(Python code for GTSRB文件夹下),在这里可以用到。
  这里按csv描述的图像信息进行ROI部分的提取,并使用pickle保存为.p文件方便后续模型训练使用。代码示例如下:

import numpy as np
import pickle
import os
import cv2
import csv

//处理训练数据
def process_train_data(path):
    file = os.listdir(path)
    classes = len(file)
    train_data = []
    train_labels = []
    for i in range(0,classes):
        dir_name = file[i]
        if dir_name=='.DS_Store':
            continue
        full_dir_path = path + dir_name
        csv_file_path = full_dir_path + '/' + 'GT-{0}.csv'.format(dir_name)
        with open(csv_file_path) as f:
            csv_reader =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值