2019 猿辅导 深度学习算法工程师 提前批笔试题

这篇博客主要介绍了2019年猿辅导深度学习算法工程师笔试的选择题,涉及到岭回归中正则化系数的影响、线性规划解决概率问题、四位数条件计数以及字符串解压算法。通过具体题目解析,阐述了岭回归的方差与偏差变化,计算了A在B之前到达公司的概率,解析了满足特定条件的4位数数量,并讨论了一个数据压缩算法的解压逻辑。

选择题 共计5题

还记得4题,具体的题目记不清楚了,大致考察的东西还记得:

第一题:求矩阵的特征值λ\lambdaλ
(0.70.40.30.6)\left (\begin{matrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{matrix} \right )(0.70.30.40.6)`

在这里插入图片描述

第二题:在岭回归中,正则化系数λ\lambdaλ的越大,此时方差和偏差的变化如何:

岭回归即L2正则

在这里插入图片描述
一方面,由于添加了正则项,模型不仅仅考虑经验风险还考虑模型复杂度对模型的影响,所以模型的更不容易过拟合。因此模型的方差变小
此时,结构风险 = 经验风险 + 正则项
正则项系数λ\lambdaλ越大,模型权重ω2\omega^2ω2的就会小。简单理解可以理解为模型变的更加简单,拟合能力变差,故模型的偏差变大

第三题:A,B两人准备去公司面试,A约定在9:30-10:00到达公司,B约定在9:45-10:00到达公司,求A在B之前到达公司的概率。

此题应用线性规划解决:
在这里插入图片描述
由图可知,在A<B的情况下,所占面积是整体面积的3/4。所以P=3/4P = 3/4P=3/4

第四题:在给定的条件下,计算满足一下条件的4位数有多少个?

  • 是奇数
  • 不包含4和9
  • 每一位各不相同

错误 : sum = ( 7 - 3 ) * (8 - 2) * (8 - 1) * 4 = 4 * 6 * 7 * 4 = 672
因为逆序考虑的时候再第三位和第二位的时候可能用了0,那么这个时候就不需要讨论在第一位的时候是否出现0了,不如先考虑第一位的概率,这样就不用讨论第二位和第三位是否出现了0的情况。
讨论:

  1. 如果在第二位、第三位没有出现0: 456*4 = 480
  2. 如果第二位或者第三位出现了0:2*5*6*1*4 = 240
  3. 共计720

考虑从第一位考虑的话可以避免讨论的情况:
改正: sum= 6*6*5*4 = 720

编程题第一题:

有一个数据压缩算法:

A3 = AAA
A02 = AA
A11 = AAAAAAAAAAA
A(BC)2 = ABCBC

如示例所示:要求接受N个长度不定的字符串,其中可能包括括号的多层嵌套,最后按其顺序解压输出。

package Interview;
import java.</
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值