先吐槽下,这两道题的数据很坑。。
参考:Acdream,之所以这里写出来只是为了让自己巩固,没别的意思。。
首先解释第一类斯特灵数:将p个物体排成k个非空循环排列的方法数。s(p,0)=0 ,p>=1 ;s(p,p)=1 ,p>=0。
递推式:s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1
递推式解释:
若p-1个物体已经排成了k个循环,那么第p个物体可以插入任意(p-1)个物体中元素的左边,那么就有s(p,k) = (p-1)*s(p-1,k)种方法数;
若p-1个物体排成了k-1个循环,那么第p个物体要想满足k个循环必须自成一个循环,那么就有s(p,k) = s(p-1,k-1)种方法数;
http://acm.hdu.edu.cn/showproblem.php?pid=3625
题意:有n个房子和n个钥匙,每个房间里放一个钥匙。侦探想打开所有房门,若有钥匙就开锁,若没就只能踹了。为了不断腿这里给出k次踹门机会,求侦探有多大几率踹门不超过k次就能打开所有房间。另外,1号门踹不动。
思路:这里钥匙的排列特点其实就是第一类斯特灵数这种环式分布,有几个环就需要踹几次门,在环内的都可以通过钥匙打开。那么1-k次可以开门的概率就是将n个门排列成i个(其中1<=i<=k)非空循环排列的方法数之和/总方法数,其中每次要减去开一号门的方法数。
算阶乘的时候初始化的sum[0]=1,必须在全局变量赋值,里面就会WA,我被WA了N次,别问我为啥,不知道= =
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long ll;
const int N = 21;
ll sum[N] = {1};//sum代表n个房n个钥匙总共多少种分发
ll S[N][N];
void init()
{
//sum[0] = 1;
for(int i = 1; i <= N; i++)
{
sum[i] = sum[i-1]*i;
}
for(int i = 1; i <= N; i++)
{
S[i][0] = 0;
S[i][i] = 1;
for(int j = 1; j < i; j++)
{
S[i][j] = (i-1)*S[i-1][j]+S[i-1][j-1];
}
}
}
int main()
{
// freopen("in.txt", "r", stdin);
int t, n, k;
ll ans;
init();
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &k);
init();
ans = 0;
for(int i = 1; i <= k; i++)
{
ans+=(S[n][i] - S[n-1][i-1]);
}
printf("%.4lf\n", (double)ans/sum[n]);
}
return 0;
}
http://acm.hdu.edu.cn/showproblem.php?pid=4372
题意:一共1~n栋楼直线排列,从前往后看有f栋,从后往前看有b栋,求这些楼一共几种排列方法。
思路:已知能看到的楼数量,那么看不到的楼怎么排就操蛋了,刚一看根本没思路。大牛说把能看到的楼当成代表元素分组,代表元素都在每组的最左边,这样每组右边的都是比较矮的被遮住的楼。最高的肯定是可以看到的,我们把所有的组分为最高楼左边的组和右边的组。这样就需要选出左边的,右边的也就有了,然后按照从低到高排序(默认)。选出左边的组就是C(f+b-2)(f-1)。注意组合不要用公式算,也用递推公式(也就是dp),这也是我学到的,原来还可以这么搞。其中C(n)(k) = C(n-1)(k-1)+C(n-1)(k)。
这些被遮住的楼每组分为一环,每组元素组内排列,那么所有的组就是把n-1个物体排成f+b-2个非空循环排列的方法数。刚开始我就想到,这没有高度限制吗,比如最高楼旁边看不见的很有可能要比最矮的代表元素要高啊,那这分组时候不就不是随机分吗?注意这里每组元素是固定不变的,也就是说所谓的方法数其实就是每组环形元素轮转的排列组合,所有被遮住的楼不管代表元素被排到哪里都会跟着他。
另外这题也让我大开眼界了,init里面写成小于等于号编译就不成功,改成小于号才行。。靠,检查了我半天,求告知是啥原因。。
还有对于不合法的输入要特判啊,不然RE,而且题中没有说明,没有一点点防备。。
还有些人也不知道咋的不特判也能擦过去,反正我是卡死了,真羡慕你们。。
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long ll;
const int N = 2005;
const ll mod = 1000000007;
ll S[N][N], C[N][N];
void init()
{
for(int i = 1; i < N; i++)//小于号不能写成小于等于
{
S[i][0] = 0;
S[i][i] = 1;
C[i][0] = C[i][i] = 1;
for(int j = 1; j < i; j++)
{
C[i][j] = (C[i-1][j-1]+C[i-1][j])%mod;//选与不选
S[i][j] = ((i-1)*S[i-1][j]+S[i-1][j-1])%mod;
}
}
}
int main()
{
// freopen("in.txt", "r", stdin);
int t, n, f, b;
ll ans;
init();
scanf("%d", &t);
while(t--)
{
scanf("%d%d%d", &n, &f, &b);
if(f+b-2 <= 2000) ans = (C[f+b-2][f-1]*S[n-1][f+b-2])%mod;
else ans = 0%mod;
printf("%lld\n", ans);
}
return 0;
}