边缘计算盒子是什么、有哪些作用?如何选型?这篇文章全面帮你了解!边缘计算云服务器ECS

一、边缘盒子是什么?

近年,边缘盒子被大家所了解,那么边缘盒子到底是什么呢?

边缘计算盒子内部配置了丰富的 AI 算法,这些算法可以帮助用户在很多场景下实现数据识别等作用。比如,在工地场景下安装边缘盒子,内部的 AI 算法可以识别工地工人的安全帽佩戴、是否有烟雾、是否有人抽烟等危险事件,保证工地的安全。

二、边缘盒子ECS 都有哪些优势?

1、加速『数据收集 - 数据传输 - 数据处理分析』流程,高效决策

通过将数据处理和计算能力直接部署在客户现场,减少数据传输的时间,这样可以高效完成数据处理,降低数据的延迟。提升『数据收集 - 数据传输 - 数据处理分析』整个链路的速度

2、减少网络带宽需求,降低成本

边缘计算盒子的应用让大部分数据处理和分析任务能在本地完成。只有若干关键的数据才回上传到云端,减少数据上传的带宽成本。

三、边缘盒子的应用

1. 智慧工地

传统工地施工现场的违规操作缺少监管手段,现场设施、明火烟雾等无法实时监控。基于 ECS 边缘服务器硬件+AI算法,构建智慧工地解决方案,实现工地的监控告警和闭环处理。

优势

  • 本地快速部署,搭建本地计算单元;
  • 边缘运维平台,支持云边运维、云边数据监控、应用远程下发、远程策略更新;
  • 成熟算法和方案,支持监控告警闭环处理;
  • 对卸料平台、配电箱、危大工程等进行实时监控、现场报警,保证工地安全。

2. 智慧灯杆

传统灯杆功能单一、改造难度大。城市停车难,违停需要依靠人力巡检治理,空闲车位也无法无法实现统一管理和利用。智慧灯杆融合AI算力,实现灯杆的功能多样化,缓解城市停车压力。

优势

  • 借助边缘服务器,支持现有灯杆利旧改造;
  • 提供违停监管、智能车位推荐等算法方案,助力城市停车管理;
  • 成熟的算法和方案,助力智慧城市管理,如城市环境监测、人流量监测等。

3. 智慧零售

关于智慧零售的应用,感兴趣的小伙伴也可以参考之前发过的文章:百度智能云参与信通院多项边缘计算标准编制,「大模型时代下云边端协同 AI 发展研讨会」成功召开_分布式云智算平台、边缘ai等系列标准-CSDN博客

通过对零售店铺的实时数据进行智能分析,得出人脸+行为+轨迹等统计数据,管理端可以即时查看客流情况、客户属性、趋势及繁忙情况,基于分析结果来优化服务流程,提升运营效率和服务能力。

优势

  • 通过人脸识别技术对进店人员身份进行会员识别,提供会员身份针对性服务;
  • 捕捉用户停留时长、智能分析其行进轨迹,辅助推断潜在需求点;
  • 对店员规范着装、店员在岗情况识别等,助力门店规范管理;
  • 提供智能客流量分析、商品热力图等,辅助分析决策。

4. 智慧加油站

传统加油站采用人工监控,存在监管不及时、成本高、易疏漏等问题。百度智慧加油站基于边缘服务器,提供智能监管、作业督查的一体化方案,助力风险防控和规范作业管理。

优势

  • 提供吸烟、烟火、消防通道占用等安全隐患监测;
  • 通过视频智能分析技术,实现监控场景智能防范;
  • 高效、精确、不间断地识别出各类安全事故,实现提前预警。



欢迎大家详细了解边缘计算 ECS 

参考资源链接:[2020 AI芯片权威目录:AIIA发布97页AI技术选型指南](https://wenku.csdn.net/doc/jnchzmisye?utm_source=wenku_answer2doc_content) AI芯片在云端训练中扮演着高性能计算的核心角色,它通过提供强大的计算能力和可扩展性来加速深度学习模型的训练过程,从而支持大数据分析和复杂算法的实现。边缘计算中的AI芯片则更多关注低功耗、高效能的数据处理,它使得即时决策成为可能,尤其适用于对实时性要求极高的应用。针对特定应用场景进行AI芯片的技术选型时,需要综合考虑多个因素,包括但不限于芯片的处理能力、功耗、成本、兼容性以及是否支持所需的AI框架和算法。 《2020 AI芯片权威目录:AIIA发布97页AI技术选型指南》提供了一个全面的AI芯片技术选型框架,这对于理解市场动态和芯片技术特点至关重要。在云端训练方面,百度昆仑1、燧原邃思等芯片强调了高性能和大规模训练的优化;而在云端推断方面,赛灵思Alveo、寒武纪思元系列等芯片则更加注重实时推理和部署效率。边缘计算场景下,天数智芯Iluvatar Core XI等芯片展现了低功耗和高效率的计算能力。 选择合适的AI芯片首先应明确应用场景的需求,例如,如果是大规模的数据中心计算,则优先考虑云端训练芯片;如果是需要实时响应的边缘设备,则边缘计算芯片可能更合适。随后,可通过阅读《AI芯片技术选型指南》等权威资料,对比不同芯片的性能指标、功耗和应用案例,来辅助决策过程。例如,NVIDIA的T4 Tensor Core GPU能够在云端训练和边缘计算中都发挥作用,提供了良好的灵活性和兼容性。 此外,也需要关注芯片所支持的AI框架和算法,以及开发者社区的活跃度和支持程度,这将影响到开发的便捷性和未来的可维护性。综合以上因素后,可以选择出最符合特定应用场景需求的AI芯片产品。 参考资源链接:[2020 AI芯片权威目录:AIIA发布97页AI技术选型指南](https://wenku.csdn.net/doc/jnchzmisye?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值