Mobius 莫比乌斯

Mobius函数:

u ( n ) = { 1 n = 1 0 n 分 解 质 因 数 后 有 指 数 > 1 ( − 1 ) k k 个 指 数 为 1 的 质 因 子 u(n)=\left\{ \begin{array}{rcl} 1 & & n=1\\ 0 & & n分解质因数后有指数>1\\ (-1)^k & &k个指数为1的质因子\\ \end{array} \right. u(n)=10(1)kn=1n>1k1

性质:
∑ d ∣ n μ ( d ) = { 1 n = 1 0 n ≠ 1 ∑_{d∣n}μ(d)=\left\{ \begin{array}{rcl} 1 & & n=1\\ 0 & & n\neq1\\ \end{array} \right. dnμ(d)={10n=1n=1

证明:
如 果 n = 1 , 则 定 理 明 显 成 立 如 果 n > 1 设 n = p 1 k 1 p 2 k 2 p 3 k 3 ⋯ p m k m d 为 其 中 一 部 分 d 的 每 个 质 因 子 指 数 为 1 时 才 有 贡 献 , 否 则 μ ( d ) = 0 设 d 中 有 r 个 质 因 子 μ ( d ) = ( − 1 ) r , 这 样 的 d 的 个 数 为 C m r ​ ∑ r = 0 m ( − 1 ) r C m r = ​ ∑ r = 0 m C m r ( − 1 ) r ∗ 1 m − r = ( − 1 + 1 ) m ( 根 据 二 项 式 定 理 ) 证 毕 如果n=1,则定理明显成立\\ 如果n>1\\ 设 n=p_1^{k_1}p_2^{k_2}p_3^{k_3}⋯p_m^{k_m}\\ d为其中一部分\\ d 的每个质因子指数为1时才有贡献,否则 μ(d)=0\\ 设d中有r个质因子\\ μ(d)=(−1)^r ,这样的d的个数为 C_m^r​\\ ∑_{r=0}^m(-1)^rC_m^r=​∑_{r=0}^mC_m^r(-1)^r*1^{m-r}=(-1+1)^m\\(根据二项式定理)证毕 n=1,n>1n=p1k1p2k2p3k3pmkmdd1μ(d)=0drμ(d)=(1)rdCmrr=0m(1)rCmr=r=0mCmr(1)r1mr=(1+1)m()

欧拉线性筛求莫比乌斯函数

void get(int n){
    mu[1]=1;
    for(int i=2;i<=n;i++){
        if(!vis[i]){//i为质数
            mu[i]=-1;prim[++cnt]=i;
        }
        for(int j=1;j<=cnt&&i*prim[j]<=n;j++)
        {
            vis[i*prim[j]]=1;
            if(i%prim[j]==0)break;//最小质因子
            else mu[i*prim[j]]=-mu[i];
        }
    }
}

反演:

若 有 f ( n ) = ∑ d ∣ n g ( d ) 若有f(n)=∑_{d∣n}g(d)\\ f(n)=dng(d) 则 有 g ( n ) = ∑ d ∣ n ​ μ ( d ​ ) f ( n d ) 则有g(n)=∑_{d∣n}​μ(d​)f(\frac{n}{d}) g(n)=dnμ(d)f(dn)
证明:
∑ d ∣ n ​ μ ( d ​ ) f ( n d ) = ∑ d ∣ n ​ μ ( d ​ ) ∑ k ∣ n d g ( k ) ∑_{d∣n}​μ(d​)f(\frac{n}{d})=∑_{d∣n}​μ(d​)∑_{k∣\frac{n}{d}}g(k)\\ dnμ(d)f(dn)=dnμ(d)kdng(k) 恒 等 变 形 恒等变形\\ ∑ d ∣ n ​ μ ( d ​ ) ∑ k ∣ n d g ( k ) = ∑ k ∣ n ​ g ( k ) ∑ d ∣ n k μ ( d ) ∑_{d∣n}​μ(d​)∑_{k∣\frac{n}{d}}g(k)=∑_{k∣n}​g(k)∑_{d∣\frac{n}{k}}μ(d)\\ dnμ(d)kdng(k)=kng(k)dknμ(d) 由 莫 比 乌 斯 函 数 的 性 质 得 仅 在 k = n 时 有 意 义 由莫比乌斯函数的性质得仅在k=n时有意义\\ k=n ∑ k ∣ n ​ g ( k ) ∑ d ∣ n k μ ( d ) = g ( n ) ∑_{k∣n}​g(k)∑_{d∣\frac{n}{k}}μ(d)=g(n) kng(k)dknμ(d)=g(n)

反演2:
若 有 f ( n ) = ∑ n ∣ d g ( d ) 若有f(n)=∑_{n∣d}g(d)\\ f(n)=ndg(d) 则 有 g ( n ) = ∑ n ∣ d ​ μ ( d n ​ ) f ( d ) 则有g(n)=∑_{n∣d}​μ(\frac{d}{n}​)f(d) g(n)=ndμ(nd)f(d)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值