Codeforces Round #382 (Div. 2)解题报告

A.Ostap and Grasshopper

大力模拟题,然而lc233大佬居然tmd怀疑是不是一个环。。。哎想多了

题意都懒得讲了orz

B.Urbanization

题意:给你n个数字,让你选n1个数字放到A集合,n2个数字放到B集合,让两个集合各自的平均数  加起来最大

我们强制要求n1<n2

一个数字t放入A堆答案的贡献是t/n1,所以排一遍序后,前n1个数字放入A集合

同理n1+1~n1+n2个数字放入B集合

大力算一发即可

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <map>
#include <cstring>
#include <ctime>
#include <vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(int i=j;i<=k;i++)
#define Dow(i,j,k) for(int i=k;i>=j;i--)
using namespace std;
inline void read(int &tx){   ll x=0,f=1;char ch=getchar();   while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}  while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}  tx=x*f; }
inline void write(ll x){    if (x<0) putchar('-'),x=-x; if (x>=10) write(x/10);   putchar(x%10+'0');  }
inline void writeln(ll x){write(x);puts("");}
using namespace std;
int n,n1,n2,a[400001];
double ans;
inline bool cmp(int x,int y){return x>y;}
int main()
{
	scanf("%d%d%d",&n,&n1,&n2);
	if(n1>n2)	swap(n1,n2);
	For(i,1,n)	scanf("%d",&a[i]);
	sort(a+1,a+n+1,cmp);
	For(i,1,n1)	ans+=(double)a[i]/n1;
	For(i,n1+1,n1+n2)	ans+=(double)a[i]/n2;
	printf("%.8lf",ans);
}
     

C. Tennis Championship

题意:n个人参加比赛,要求除第一次以外每次比赛的双方参加比赛次数不同,问至少多少次能得出冠军

既然要最少,那么在场的所有人参加比赛次数相差不大于1。

一个显然的结论,如果场上有x个参加t场,y个参加t-1场,则可以得到x-y个t+1场

例如5个参加t场,3个参加t-1场,则可以得到2个参加t+1场

那么我们倒推过来

显然就是个斐波那契啊。。。。。。

于是暴力推

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <map>
#include <cstring>
#include <ctime>
#include <vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(int i=j;i<=k;i++)
#define Dow(i,j,k) for(int i=k;i>=j;i--)
using namespace std;
inline void read(int &tx){   ll x=0,f=1;char ch=getchar();   while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}  while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}  tx=x*f; }
inline void write(ll x){    if (x<0) putchar('-'),x=-x; if (x>=10) write(x/10);   putchar(x%10+'0');  }
inline void writeln(ll x){write(x);puts("");}
using namespace std;
ll n,f[10001],tot;
int main()
{
	scanf("%lld",&n);
	f[0]=1;
	f[1]=1;
	tot=1;
	while(1)
	{
		if(f[tot]>=n)	break;
		tot++;
		f[tot]=f[tot-1]+f[tot-2];
	}
	if(f[tot]>n)	tot--;
	printf("%lld",tot-1);
}
D. Taxes

题意:给定一个n,定义f(n)为n的最大因子(除自己),把n分成任意份,求sigma(f(ni))的最小值

lc233大佬太强了orz

当我还在懵比时,大佬直接来了一句  哥德巴赫猜想啊

????

还有这种破题????

一个不等于2的偶数,分成两个质数,答案=2

对于一个是质数的奇数  答案=1

一个不是质数的奇数,我们分出一个2后,如果是质数了,答案=2,否则答案=3

鬼题。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <map>
#include <cstring>
#include <ctime>
#include <vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(int i=j;i<=k;i++)
#define Dow(i,j,k) for(int i=k;i>=j;i--)
using namespace std;
inline void read(int &tx){   ll x=0,f=1;char ch=getchar();   while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}  while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}  tx=x*f; }
inline void write(ll x){    if (x<0) putchar('-'),x=-x; if (x>=10) write(x/10);   putchar(x%10+'0');  }
inline void writeln(ll x){write(x);puts("");}
using namespace std;
ll	n;

int main()
{
	scanf("%lld",&n);
	if(n==2){puts("1");return 0;}
	if(n%2==0)	{puts("2");return 0;}
	bool flag=1;
	For(i,2,sqrt(n)+1)	if(n%i==0)	flag=0;
	if(flag==1)	{puts("1");return 0;}
	n-=2;
	flag=1;
	For(i,2,sqrt(n)+1)	if(n%i==0)	flag=0;
	if(flag==1)	{puts("2");return 0;}
	puts("3");
}
     
E. Ostap and Tree

题意:给定一棵树,可以把任意个节点标记,要求所有节点都可以以小于k的距离到达一个被标记的节点,求标记的方案数


拿到题一脸懵逼

哎,到了E题果然就是不水了啊


还是看了题解,感觉有点类似于点分的树型dp吧

定义f[i][j]为距离i点,最近被标记点的距离是j的方案数


听起来很可做啊。。

对于节点x,我们每次枚举一个son[x]

然后考虑转移

我们要把f[son[x]][t]转移到f[x][j]的话,相当于是在另外的son[x]中选一个位置,然后来转移,因此是不相干的选法,显然乘法原理


然后我们分两类讨论 

1、(t+1)+x<=2*k

那么对于i来说,最近的被标记点为min(t+1,x)

2、(t+1)+x>2*k

这种情况下,属于不合法的一个状态,因此其实我们不能认为他是min(i+1,x),而是max(i+1,x)

这个我一开始也不是很理解,后来才发现:对于f[i][j] j>k,其实都是不合法的状态

为什么要记录呢?其实也很显然

因为我们转移类似1,2*k-1这种情况时,其实是需要用到的

这样写可以理解为是懒得开别的数字来存储不合法状态

如果不理解的话,可以画一下图

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <map>
#include <cstring>
#include <ctime>
#include <vector>
#define inf 1e9
#define ll long long
#define For(i,j,k) for(ll i=j;i<=k;i++)
#define Dow(i,j,k) for(ll i=k;i>=j;i--)
using namespace std;
inline void read(ll &tx){   ll x=0,f=1;char ch=getchar();   while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}  while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}  tx=x*f; }
inline void write(ll x){    if (x<0) putchar('-'),x=-x; if (x>=10) write(x/10);   putchar(x%10+'0');  }
inline void writeln(ll x){write(x);puts("");}
using namespace std;
ll mo=1e9+7;

ll poi[10001],F[10001],nxt[10001],f[1001][1001],tmp[1001],ans,n,k,x,y,cnt;
bool vis[1001];
inline void add(ll x,ll y){poi[++cnt]=y;nxt[cnt]=F[x];F[x]=cnt;}
inline void dfs(ll x)
{
	vis[x]=1;
	f[x][0]=f[x][k+1]=1;
	for(ll i=F[x];i;i=nxt[i])
	{
		ll ne=poi[i];
		if(vis[ne])	continue;
		dfs(ne);
		For(j,0,2*k+1)	tmp[j]=0;
		For(j,0,2*k+1)
			For(t,0,2*k)
			{
				if(j+t<=2*k)	
					tmp[min(j,t+1)]+=f[x][j]*f[ne][t],tmp[min(j,t+1)]%=mo;
				else
					tmp[max(j,t+1)]+=f[x][j]*f[ne][t],tmp[max(j,t+1)]%=mo;
			}
		For(j,0,2*k+1)	f[x][j]=tmp[j];
	}
}
int  main()
{
	read(n);read(k);
	For(i,1,n-1)	read(x),read(y),add(x,y),add(y,x);
	dfs(1);
	For(i,0,k)	ans+=f[1][i],ans%=mo;
	writeln(ans);
}



已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页