第二道斜率优化,对斜率优化有了新的理解。开心(大雾
这题的题面其实就是在说 斜率优化!斜率优化!斜率优化!
好吧就是道裸题
我们考虑更新f[i]时选择的节点
如果k比j更优
则有:
f[j]+(j-i+sum[i]-sum[j]-L)^2<f[k]+(L+k-i+sum[i]-sum[k]-L)^2
f[j]+(sum[i]-sum[j])^2-2*(i-j+L)*(sum[i]-sum[j])+(i-j+L)^2<f[k]+(sum[i]-sum[k])^2+2*(i-k+L)*(sum[i]-sum[k])+(i-k+L)^2
令t1=i-j+L,t2=i-k+L;
f[j]+(sum[i]-sum[j])^2-2*t1*(sum[i]-sum[j])+t1^2<f[k]+(sum[i]-sum[k])^2-2*t2*(sum[i]-sum[k])+t2^2
f[j]-f[k]+(sum[i]-sum[j])^2-(sum[i]-sum[k])^2+t1^2-t2^2<2*sum[i]*(sum[k]-sum[j]+k-j)
f[j]-f[k]+(sum[i]-sum[j])^2-(sum[i]-sum[k])^2+t1^2-t2^2)/(2*sum[k]-sum[j]+k-j)<sum[i]
。。别看这个公式很烦,其实你如果用Sum[i]去表示sum[i]+i的话很方便,只是这里我写的严谨了点
嗯、、Sum[i]表示的话,公式如下
(f[j]-f[k]+(sum[j]+l)^2+(sum[k]+l)^2)/(2*(sum[k]-sum[j])<sum[i]
好了就是这样
考虑这个东西是个斜率式子,我们要求最小值,所以斜率不可能递减
为什么?因为递减的话你还不如直接从上一个位置更新过来
所以我们可以根据这个性质,维护一个下凸壳
顺便一说,如果是要最大值,则要维护上凸壳
补:
突然发现忘记放代码了。。。。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <string>
#include <map>
#include <set>
#include <cstring>
#include <ctime>
#include <vector>
#define inf 1e9
#define eps 1e-9
#define iter multiset<ll>::iterator
#define ll long long
#define maxn 20010
#define For(i,j,k) for(ll i=j;i<=k;i++)
#define Dow(i,j,k) for(ll i=k;i>=j;i--)
using namespace std;
inline void read(ll &tx){ ll x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} tx=x*f; }
inline void write(ll x){ if (x<0) putchar('-'),x=-x; if (x>=10) write(x/10); putchar(x%10+'0'); }
inline void writeln(ll x){write(x);puts("");}
ll n,l,a[100001],q[100001],L,R,f[100001];
inline ll sqr(ll x){return x*x;}
inline double get(ll y,ll x)
{
return (double)(f[x]-f[y]+sqr(a[x]+l)-sqr(a[y]+l))/(2.0*(a[x]-a[y]));
}
int main()
{
read(n);read(l);l++;
For(i,1,n) read(a[i]);
For(i,1,n) a[i]+=a[i-1]+1;
L=R=1;q[1]=0;
For(i,1,n)
{
while(L<R&&get(q[L],q[L+1])<=a[i]) L++;
f[i]=f[q[L]]+sqr(a[i]-a[q[L]]-l);
while(L<R&&get(q[R-1],q[R])>get(q[R],i)) R--;
q[++R]=i;
}
writeln(f[n]);
}