Acwing 基础课—基础算法—二分排序

本文介绍了如何使用二分查找算法在升序数组中寻找目标元素的首次出现和最后出现位置。提供了两种不同的解决方案:利用`lower_bound`和`upper_bound`函数,以及直接编写二分查找模板。同时,还给出了处理数的三次方根问题的二分搜索方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二分排序模板

在一个升序序列中,求一个数第一次出现的位置、最后一次出现的位置,不存在返回-1

int first_pos(){
    int l = 0;
    int r = n - 1;
    while(l < r){
        int mid = (l + r) / 2;
        if(a[mid] < x){
            l = mid + 1;
        }else{
            r = mid;
        }
    }
    if(a[l] != x)   return -1;
    else return l;
}
int last_pos(){
    int l = 0;
    int r = n - 1;
    while(l < r){
        int mid = (l + r + 1) / 2;
        if(a[mid] <= x){
            l = mid;
        }else{
            r = mid - 1;
        }
    }
    if(a[l] != x) return -1;
    else return l;
}

1 数的范围

题目链接

https://www.acwing.com/problem/content/description/791/

题目大意

给定一个按照升序排列的长度为n的整数数组,以及 q 个查询。
对于每个查询,返回一个元素k的起始位置终止位置(位置从0开始计数)。
如果数组中不存在该元素,则返回“-1 -1”。

思路一 lower_bound、upper_bound

升序序列中:

  • lower_bound( begin,end,num)从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标
  • upper_bound( begin,end,num):第一个大于num的数字

降序序列中,相反

#include<bits/stdc++.h>
using namespace std;

int a[100005];
// 没找到,xxx_bound(a,a+n,x) - a,返回n

int main(){
    int n,q;
    cin >> n >> q;
    for(int i = 0;i < n;i++){
        scanf("%d",&a[i]);
    }
    while(q--){
        int x;
        scanf("%d",&x);
        int z = lower_bound(a,a+n,x) - a;
        if(z == n || a[z] != x){
            //没有找到第一个大于或等于x的数,返回n
            //由于最后一位可能刚好是x(此时返回n - 1),所以特判
            cout << -1 << " " << -1 << endl;
        }else{
            int i = lower_bound(a,a+n,x) - a;
            int j = upper_bound(a,a+n,x) - a;
            if(j == n && a[j - 1] != x){
                //没有找到第一个大于x的数,返回n
                //由于最后一位也有可能是x(此时返回n),所以特判
                cout << i << " " << i << endl;
            }else{
                cout << i << " " << j - 1 << endl;
            }
        }
    }
    return 0;
}
思路二 统计一下每个数字的出现位置
#include<stdio.h>
int a[100005];//source
int b[100005];//num_start
int c[100005];//num_end
int d[100005];
int main(){
    int m,n;
    scanf("%d %d",&m,&n);
    int x;
    scanf("%d",&x);
    a[0] = x;
    d[x] = 1;
    b[0] = 0;
    c[0] = 0;
    for(int i = 1;i < m;i++){
        scanf("%d",&x);
        a[i] = x;
        d[x] = 1;
        if(x == a[i-1]){
            c[x] = i;//update end
        }else{
            b[x] = i;//update begin
        }
    }
    int p;
    for(int i = 0;i < n;i++){
        scanf("%d",&p);
        if(d[p] != 0){
            if(c[p] == 0){
                printf("%d %d\n",b[p],b[p]);
            }else{
                printf("%d %d\n",b[p],c[p]);
            }
            
        }else{
            printf("-1 -1\n");
        }
    }
    return 0;
}
思路三 二分排序(模板)

详细推导可以看这里
https://www.acwing.com/solution/content/3338/

#include<stdio.h>
#include<iostream>
using namespace std;
const int N = 1e5+5;
int a[N];
int n,q,x;

int first_pos(){
    int l = 0;
    int r = n - 1;
    while(l < r){
        int mid = (l + r) / 2;
        if(a[mid] < x){
            l = mid + 1;
        }else{
            r = mid;
        }
    }
    if(a[l] != x)   return -1;
    else return l;
}
int last_pos(){
    int l = 0;
    int r = n - 1;
    while(l < r){
        int mid = (l + r + 1) / 2;
        if(a[mid] <= x){
            l = mid;
        }else{
            r = mid - 1;
        }
    }
    if(a[l] != x) return -1;
    else return l;
}

int main(){
    cin >> n >> q;
    for(int i = 0;i < n;i++) scanf("%d",&a[i]);
    while(q--){
        cin >> x;
        int f1 = first_pos();
        int f2 = last_pos();
        cout << f1 << " " << f2 << endl;
    }
    return 0;
}

2 数的三次方根

题目链接

https://www.acwing.com/problem/content/description/792/

题目大意

给定一个浮点数n,求它的三次方根。
注意,结果保留6位小数。
−10000≤n≤10000

解题思路

二分

#include<bits/stdc++.h>
using namespace std;
double q(double x){
    return x * x * x;
}
int main(){
    double n;
    cin >> n;
    double l = -10000;
    double r = 10000;
    while(r - l >= 1e-7){
        double mid = (r + l) / 2;
        if(q(mid) >= n){
            r = mid;
        }else{
            l = mid;
        }
    }
    printf("%.6f\n",l);
    return 0;
}
### AcWing 算法基础课中的二分法相关练习题 #### 二分查找基本概念 二分查找是一种高效的搜索算法,适用于已排序的数据结构。其核心思想是在每次迭代中将搜索范围减半,从而快速定位目标值的位置[^1]。 #### 练习题推荐 ##### 查找特定元素 对于给定的一个升序数组`nums`以及一个整数值`target`,编写函数来实现二分查找返回该值首次出现位置;如果不存在则返回-1。 ```python def binary_search(nums, target): left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] == target and (mid == 0 or nums[mid - 1] != target): return mid elif nums[mid] >= target: right = mid - 1 else: left = mid + 1 return -1 ``` ##### 寻找峰值元素 在一个无重复元素的数组里找到任意一个满足条件`A[i]>A[i−1] && A[i]>A[i+1]` 的索引i作为峰顶并输出它; 如果有多个这样的点只需给出其中一个即可. ```cpp int findPeakElement(vector<int>& nums) { int n=nums.size(); if(n==1 || nums[0]>nums[1])return 0; if(nums[n-1]>nums[n-2])return n-1; int l=1,r=n-2; while(l<=r){ int m=(l+r)/2; if((m==n-1||nums[m]>nums[m+1])&&(m==0||nums[m]>nums[m-1]))return m; else if(m>0&&nums[m]<nums[m-1]) r=m-1; else l=m+1; } } ``` ##### 计算平方根 计算并返回非负实数x的小数部分最接近于y的那个数z(保留k位有效数字),其中y=x^(1/2). ```c++ double mySqrt(double x,int k) { double L = 0,R = max(1.0,x); for(int i=0;i<k;++i){ double M =(L+R)*0.5; if(M*M>x) R=M-(pow(10,-i)); else L=M+(pow(10,-i)); } return round(L*(pow(10,k)))/(pow(10,k)); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值