Acwing 基础课—基础算法—离散化、区间合并

1 离散化——区间和

题目链接

https://www.acwing.com/problem/content/description/804/

题目大意

假定有一个无限长的数轴,数轴上每个坐标上的数都是0。
现在,我们首先进行 n 次操作,每次操作将某一位置x上的数加c。
接下来,进行 m 次询问,每个询问包含两个整数l和r,你需要求出在区间[l, r]之间的所有数的和。
−109≤x≤109 ,
1≤n,m≤105,
−109≤l≤r≤109,
−10000≤c≤10000

解题思路

参考链接
https://www.acwing.com/solution/content/2321/
离散化的本质,是映射,将间隔很大的点,映射到相邻的数组元素中。减少对空间的需求,也减少计算量。

首先,可以先统计所有出现的坐标(将无限长的数组,离散化为有限的坐标),记录插入操作的插入值、记录查询操作的两个区间,其次将所有出现的坐标去重。接着处理插入操作,使用二分查找找到相应的坐标;然后,为了方便计算查询操作的区间和,使用前缀和进行预处理;最后,在前缀和数组上处理查询操作。

  • const int N = 300010; 为什么要开300000+10呢,因为我前面说过了提前考虑了前缀和的因素,加上了2*m个点,又因为怕出现数组越界,多加了10。什么时候会用完300000个空间呢,那就是无重复元素,外加n和m都是1e5次方的打下
  • 二分查找中,为什么返回r + 1,这是变相的让映射后的数组从1开始
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef pair<int, int> PII;
//1≤n,m≤10^5,将无限长的数轴映射为n个坐标
const int N = 300010;
int n, m;
int a[N], s[N];

vector<int> alls;
vector<PII> add, query;

//第一个 >= x 的位置
int find(int x){
    int l = 0, r = alls.size() - 1;
    while (l < r){ 
        int mid = l + r >> 1;
        if (alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    return r + 1; // 映射到1.2......n
}
//会将所有重复的元素,放在后面,然后删除就可以了
vector<int>::iterator unique(vector<int> &a){
    int j = 0;
    for (int i = 0; i < a.size(); i ++ )
        if (!i || a[i] != a[i - 1])
            a[j ++ ] = a[i];
    // a[0] ~ a[j - 1] 所有a中不重复的数
    return a.begin() + j;
}

int main(){
    cin >> n >> m;
    for (int i = 0; i < n; i ++ ){
        int x, c;
        cin >> x >> c;
        add.push_back({x, c});
        alls.push_back(x);
    }
    for (int i = 0; i < m; i ++ ){
        int l, r;
        cin >> l >> r;
        query.push_back({l, r});
        alls.push_back(l);
        alls.push_back(r);
    }
    // alls 涉及了所有的下标
    // 去重
    sort(alls.begin(), alls.end());
    //h 删除下标pos开始的n个字符
    // unique(alls) 会将所有重复的数字放在最后
    alls.erase(unique(alls), alls.end());
    
    
    // 处理插入
    for (auto item : add){
        int x = find(item.first);
        a[x] += item.second;
    }
    // 前缀和
    for (int i = 1; i <= alls.size(); i ++ )
        s[i] = s[i - 1] + a[i];
    // 处理询问
    for (auto item : query){
        int l = find(item.first), r = find(item.second);
        cout << s[r] - s[l - 1] << endl;
    }
    return 0;
}
这里涉及两个模板
模板一 vector去重
//会将所有重复的元素,放在后面,然后删除就可以了
vector<int>::iterator unique(vector<int> &a){
    int j = 0;
    for (int i = 0; i < a.size(); i ++ )
        if (!i || a[i] != a[i - 1])
            a[j ++ ] = a[i];
    // a[0] ~ a[j - 1] 所有a中不重复的数
    return a.begin() + j;
}
int main(){
	...
	// 去重
    sort(alls.begin(), alls.end());
    //.erase() 删除下标pos开始的n个字符
    alls.erase(unique(alls), alls.end());
	...
}
模板二 二分查找第一个>= x的位置
//第一个 >= x 的位置
int find(int x){
    int l = 0, r = alls.size() - 1;
    while (l < r){ 
        int mid = l + r >> 1;
        if (alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    // 返回的下标从1开始
    return r + 1; // 映射到1.2......n
}

2 区间合并——区间合并

题目链接

https://www.acwing.com/problem/content/805/

题目大意

给定 n 个区间 [li,ri],要求合并所有有交集的区间。
注意如果在端点处相交,也算有交集。
输出合并完成后的区间个数。
例如[1,3]和[2,6]可以合并为一个区间[1,6]。

解题思路 模拟

显然区间的端点非常关键
区间左端点排序后,可以设置start,end记录上一次区间的左右端点。
如果上一次区间的右端点,比新的区间的左端点还要大,但小于右端点,此时,上一次区间与新的区间可以合并,合并后的新区间的两个端点是:[old_start,new_end]。
如果上一次区间的右端点,比新的区间的两个端点还要大,旧区间自然包含了新的区间,不需要合并。
如果上一次区间的右端点,比新的区间的左端点还要小,由于已经按区间左端点排序,则旧区间不会再进行合并,记录区间即可。

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
typedef pair<int,int> PII;

vector<PII> ans,res;
int main(){
    int n;
    cin >> n;
    for(int i = 0;i < n;i++){
        int x,y;
        cin >> x >> y;
        ans.pb(mp(x,y));
    }
    sort(ans.begin(),ans.end());
    int start = -1e9;
    int end = -1e9;
    for(auto it : ans){
        if(end < it.first){
            if(end == -1e9){
                end = it.second;
                start = it.first;
            }else{
                res.pb(mp(start,end));
                end = it.second;
                start = it.first;
            }
        // end < it.second才更新,否则可以直接不用管(前一个范围>it当前的范围)
        }else if(end < it.second){
            end = it.second;
        }
    }
    //处理最后的区间
    if(end != -1e9 && start != -1e9){
        res.pb(mp(start,end));
    }
    cout << res.size() << "\n";
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值