1 离散化——区间和
题目链接
https://www.acwing.com/problem/content/description/804/
题目大意
假定有一个无限长的数轴,数轴上每个坐标上的数都是0。
现在,我们首先进行 n 次操作,每次操作将某一位置x上的数加c。
接下来,进行 m 次询问,每个询问包含两个整数l和r,你需要求出在区间[l, r]之间的所有数的和。
−109≤x≤109 ,
1≤n,m≤105,
−109≤l≤r≤109,
−10000≤c≤10000
解题思路
参考链接
https://www.acwing.com/solution/content/2321/
离散化的本质,是映射,将间隔很大的点,映射到相邻的数组元素中。减少对空间的需求,也减少计算量。
首先,可以先统计所有出现的坐标(将无限长的数组,离散化为有限的坐标),记录插入操作的插入值、记录查询操作的两个区间,其次将所有出现的坐标去重。接着处理插入操作,使用二分查找找到相应的坐标;然后,为了方便计算查询操作的区间和,使用前缀和进行预处理;最后,在前缀和数组上处理查询操作。
- const int N = 300010; 为什么要开300000+10呢,因为我前面说过了提前考虑了前缀和的因素,加上了2*m个点,又因为怕出现数组越界,多加了10。什么时候会用完300000个空间呢,那就是无重复元素,外加n和m都是1e5次方的打下
- 二分查找中,为什么返回r + 1,这是变相的让映射后的数组从1开始
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef pair<int, int> PII;
//1≤n,m≤10^5,将无限长的数轴映射为n个坐标
const int N = 300010;
int n, m;
int a[N], s[N];
vector<int> alls;
vector<PII> add, query;
//第一个 >= x 的位置
int find(int x){
int l = 0, r = alls.size() - 1;
while (l < r){
int mid = l + r >> 1;
if (alls[mid] >= x) r = mid;
else l = mid + 1;
}
return r + 1; // 映射到1.2......n
}
//会将所有重复的元素,放在后面,然后删除就可以了
vector<int>::iterator unique(vector<int> &a){
int j = 0;
for (int i = 0; i < a.size(); i ++ )
if (!i || a[i] != a[i - 1])
a[j ++ ] = a[i];
// a[0] ~ a[j - 1] 所有a中不重复的数
return a.begin() + j;
}
int main(){
cin >> n >> m;
for (int i = 0; i < n; i ++ ){
int x, c;
cin >> x >> c;
add.push_back({x, c});
alls.push_back(x);
}
for (int i = 0; i < m; i ++ ){
int l, r;
cin >> l >> r;
query.push_back({l, r});
alls.push_back(l);
alls.push_back(r);
}
// alls 涉及了所有的下标
// 去重
sort(alls.begin(), alls.end());
//h 删除下标pos开始的n个字符
// unique(alls) 会将所有重复的数字放在最后
alls.erase(unique(alls), alls.end());
// 处理插入
for (auto item : add){
int x = find(item.first);
a[x] += item.second;
}
// 前缀和
for (int i = 1; i <= alls.size(); i ++ )
s[i] = s[i - 1] + a[i];
// 处理询问
for (auto item : query){
int l = find(item.first), r = find(item.second);
cout << s[r] - s[l - 1] << endl;
}
return 0;
}
这里涉及两个模板
模板一 vector去重
//会将所有重复的元素,放在后面,然后删除就可以了
vector<int>::iterator unique(vector<int> &a){
int j = 0;
for (int i = 0; i < a.size(); i ++ )
if (!i || a[i] != a[i - 1])
a[j ++ ] = a[i];
// a[0] ~ a[j - 1] 所有a中不重复的数
return a.begin() + j;
}
int main(){
...
// 去重
sort(alls.begin(), alls.end());
//.erase() 删除下标pos开始的n个字符
alls.erase(unique(alls), alls.end());
...
}
模板二 二分查找第一个>= x的位置
//第一个 >= x 的位置
int find(int x){
int l = 0, r = alls.size() - 1;
while (l < r){
int mid = l + r >> 1;
if (alls[mid] >= x) r = mid;
else l = mid + 1;
}
// 返回的下标从1开始
return r + 1; // 映射到1.2......n
}
2 区间合并——区间合并
题目链接
https://www.acwing.com/problem/content/805/
题目大意
给定 n 个区间 [li,ri],要求合并所有有交集的区间。
注意如果在端点处相交,也算有交集。
输出合并完成后的区间个数。
例如[1,3]和[2,6]可以合并为一个区间[1,6]。
解题思路 模拟
显然区间的端点非常关键。
按区间左端点排序后,可以设置start,end记录上一次区间的左右端点。
如果上一次区间的右端点,比新的区间的左端点还要大,但小于右端点,此时,上一次区间与新的区间可以合并,合并后的新区间的两个端点是:[old_start,new_end]。
如果上一次区间的右端点,比新的区间的两个端点还要大,旧区间自然包含了新的区间,不需要合并。
如果上一次区间的右端点,比新的区间的左端点还要小,由于已经按区间左端点排序,则旧区间不会再进行合并,记录区间即可。
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
typedef pair<int,int> PII;
vector<PII> ans,res;
int main(){
int n;
cin >> n;
for(int i = 0;i < n;i++){
int x,y;
cin >> x >> y;
ans.pb(mp(x,y));
}
sort(ans.begin(),ans.end());
int start = -1e9;
int end = -1e9;
for(auto it : ans){
if(end < it.first){
if(end == -1e9){
end = it.second;
start = it.first;
}else{
res.pb(mp(start,end));
end = it.second;
start = it.first;
}
// end < it.second才更新,否则可以直接不用管(前一个范围>it当前的范围)
}else if(end < it.second){
end = it.second;
}
}
//处理最后的区间
if(end != -1e9 && start != -1e9){
res.pb(mp(start,end));
}
cout << res.size() << "\n";
return 0;
}