python tensorflow 多进程或多线程批量读取图像 数据读取加速 multiprocessing.pool concurrent.futures

需求

格式为(batch, frames, h, w, c)的视频输入需要使用生成器,自定义网络的输入,但是重复batch*frames次数据的读取操作,如果默认循环读取方式,读取速度100frames/s,严重影响训练进程。
电脑CPU核心数充沛,需要使用多进程方案,每一个batch分配一个进程,并行读取数据

multiprocessing.pool

百度搜网上基本是这段程序

import os
import time
from PIL import Image
from multiprocessing import Pool
 
def get_file_path(path):
    img_paths = []
    dirs = os.listdir(path)
    for file_dir in dirs:
        file_path = os.path.join(path, file_dir)
        img_names = os.listdir(file_path)
        for img_name in img_names:
            img_path = os.path.join(file_path, img_name)
            img_paths<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值