1. 言语理解
体量:普遍10道左右,建行17道左右
题型:选词填空、语句表达(病句、修辞、排序、填充)、阅读理解
选词填空:
没啥好说的,主要考察对词语和成语的理解,需多积累
语句表达:
1.1 病句
(1)成分残缺:我国人民正意气风发地为建设一个现代化强国(而奋斗)。
(2)成分冗余:只有把想法付诸于行动,才能最大限度地达到我们的目标。
(3)句式杂糅:教师心态浮躁的背后,是整体学术氛围不纯的表现。
前三种比较好做:仔细通读即可
(4)搭配不当(易错)
(a):修饰不当:我们中华民族在人类文明发展史上曾经有过优越的贡献。(病因:优越不能形容贡献,要用卓越形容贡献);机关考勤制度改革后,出勤率较之前有很大的增加(病因:出勤率不能用增加,要用提升)
(b):搭配不当:在拉萨的土地上,到处都可以看到农民们的笑脸和吆喝声。(病因:吆喝声不能用"看”)
(4)歧义:几个学校的领导一起来了(需仔细揣摩)
(5)不合逻辑:中国文化和东方文化的伟大复兴,必将改变西方文化片面主宰世界的格局(病因:中国文化包含在东方文化中,不能并列);21世纪的中国有没有希望,关键在于(是否)坚定地继承和发扬中华民族的优良传统(病因:两面对一面)
1.2 修辞
对比、衬托、比喻、借代、通感、比拟(拟人/拟物):密集的芦苇细心地呵护着脚下偷偷开放的野花(拟人)、排比、设问、反问、夸张
1.3 排序
关注首尾、抓住关联词、看准代词、注意逻辑顺序(时间顺序、事物发展顺序、空间顺序(上下、左右、内外、整体与局部)
1.4 填空
(1)首尾句、过渡句:总结、概括、承上启下
(2)其中注重三点:话题统一、前后照应、句式一致
阅读理解:
1.1 主旨观点:这段文字的主要意思是?
注重关键词(高频词、总结词、强调词)、关键句(首尾句、转折句、对策句)
1.2 细节判断:以下说法(不)正确的是?
主要错误:绝(太多绝对)、无(无中生有)、误(推理错误)、换(偷换概念)
1.3 词语理解:xxx在xxxxx中是什么意思?
1.4 推断下文:接下来有可能讨论的是?
关注尾句:
(1)提出概念:解释概念
(2)提出现象:论述现象表现/现象产生的原因
(3)得出结论:分析原因/提出措施
1.5 添加标题:这段话最贴切的标题是?
1.6 文章阅读:一段文字,综合1.1-1.5各种题型
-----------------------------------
2. 数学运算
体量:普遍10-20道
题型:几何问题、行程问题、工程问题、利润问题
技巧题:
2.1 整除
类别 | 判定方法 | 举例 |
被3整除 | 各位数之和是3的倍数 | |
被9整除 | 各位数之和是9的倍数 | |
被7整除 | 末3位与剩下的数只差能被7整除 | 1005928,末3位:928,其余数字:1005,1005-928=77,77可以被7整除,因此可以被7整除 |
被11整除 | 奇数位数字之和与偶数位数字之和的差能被11整除 | 1331,1+3=4,3+1=4,4-4=0,0可以被11整除,所以1331也能被11整除 |
被6整除 | 能同时被2和3整除 |
整除的性质:
(1)可传递性:42能被14整除,14能被7整除,所以42能被7整除
(2)可加减性:30能被3整除,18能被3整除,所以30+18=48能被3整除,30-18=12也能被3整除
例题:一个四位数,可以被15、12、10整除,这四个数字的和是多少:
A. 17 B.16 C.15 D.14
解析:先看题,四个数字之和意味着要往3或9的整除上去靠,四位数能被15整除,15被3整除,则该四位数应能被3整除,根据被3整除的规则可知,四个数之和也应能被3整除,只能选C
2.2 质数与合数
质数:除了1和自身整除,不能被其他整数整除。2是唯一的偶质数,其他的质数均为奇数
合数:除了1和自身整除,还能被其他整数整除。
任何一个合数都能写成若干质数的乘积--质因数分解(短除法,从最小质数开始除,逐渐增大)
例题:a,b,c均为质数,且a+b+c=94,ab+bc+ac=2075,abc的值?
答:a+b+c=94,为合数,奇数与奇数的和为偶数,偶数与偶数的和为偶数,说明a,b,c中有一个为2(偶数)。假设a为2,则b+c=94,2b+bc+2c=2075,bc=2075-2(b+c)=1891,abc=2bc=3782。
2.3 公因数和公倍数
公因数:两个数有公共的因数,则称这个因数为公因数,互质:两个数的最大公因数为1
公倍数:两个数有公共的倍数,则称为这个因数为公倍数
例如:24=2x2x2x3,60=2x2x3x5
最大公因数(找交集相乘):2x2x3=12,最小公倍数(找并集相乘):2x2x2x3x5=120
2.4 代入排除
适合题型:题目中要求的量是"最大/最小”时,分别从最大值、最小值开始代入
特殊:选择性代入
已知:甲乙共260本书,其中甲的书13%是专业书,乙的书12.5%是专业书,问甲有多少非专业书?
解答:书本数肯定是整数,那么甲的书是100的倍数,乙的书是8的倍数。若甲的书是100,乙书为160,符合题意,则甲的非专业书为100-13=87本。
2.4 方程法
使用绝大部分问题
2.5 特殊值法
为方便计算,可设置一些特殊值:1、100、公倍数、比例份数等
十字交叉法:ax+by=c(x+y),可通过十字交叉法快速得到x/y的值
a c-b x
c (c-b)/(a-c)=x/y
b a-c y
例题:全班平均分89,男生平均分92,女生平均分87,问男女比例
答:92x+87y=89(x+y),x/y=2/3
常考题型:
2.1 几何问题
平面图形(三角形、长(正)方形、梯形、圆形)的周长与面积
勾股定理,熟记(3,4,5)(5,12,13)
三角形相似:三个角相等,三条边成比例,面积之比为比例的平方
立体图形(正方体、长方体、圆柱体、球体,圆锥体)的表面积和体积
2.2 行程问题
平均速度:总路程与总用时之比。特殊:当前半段和后半段距离相等时,平均速度=2v1v2/(v1+v2)
比例关系:时间一定则速度和路程成正比;速度一定则时间和路程成正比;路程一定则时间和速度成反比
例题:老赵计划从a到b,如果一开始就提速25%,可以提前54分钟到达,如果先开24km,再提速30%,也可以提前54分钟到达,则a到b的距离是多少?
方法一:可列方程,但是非常难解
方法二:利用比例,提速前:提速后=1:1.25=4:5,路程相同,速度和时间成反比,即5:4,那么原计划所需时间为(54/(5-4))*5=270min。若先开24km,速度之比为1:1.3,时间之比:13:10,提速后时间为(54/(13-10))*13=234min,则时间差为270-234=36min,那么原速度为24/36=2/3,总共需要270min,则总路程为2/3*270=180。
2.3 相遇追及
相遇路程=速度和x相遇时间
追击路程=速度差x追及时间
例题:火车从行人(1m/s)身边的驶过的时间为22s,从骑车人(3m/s)身边驶过的时间为26s,求火车长。
答:火车速度x,长度y。y=(x-1)*22,y=(x-3)*26,解的x=14,y=286
直线多次相遇:第n次相遇时,每个人走的路程等同于第一次相遇时所走路程的(2n-1)倍,时间也对应(2n-1)倍
环线相遇:
情形1:周长s环形跑道,两人同一起点出发逆向而行,第一次相遇,两人路程之和为s,第n次相遇时两人路程之和为ns,每个人走的路程等于第一次相遇时路程的n倍
情形2:周长s环形跑道,两人同一起点出发同向而行,第一次相遇,两人路程之差为s,第n次相遇时两人路程之差为ns
情形3:两人从不同点出发,先计算第一次相遇时间,再代入情形1或情形2
例题:A、B、C三人从400米跑道的同一地点出发,A、B同向,速度分别为3m/s,4m/s,C逆向,速度为5m/s,问多少秒C位于A、B中间?
A. 20,B.30,C.40,D.50
答:时间应该位于C与B相遇和C与A相遇的时间之间。C与B相遇:400/(4+4.5)=47,C与A相遇:400/(3+4.5)=53,因此只有D符合
2.4 流水行船
顺水速度=船速+水速
逆水速度=船速-水速
2.5 工程问题
类似于时间、速度、路程,比例关系,合作完工问题
2.6 利润问题
(1)利润=收入-支出
(2)利润率=利润/成本=(售价-成本)/成本=售价/成本-1
(3)打折
2.7 浓度问题
浓度=溶质/溶液
溶液=溶质+溶液
十字交叉法可以解决两种溶液的混合问题:
两种溶液的质量/体积分别为m1,m2,浓度分别为c1,c2,混合后的浓度为c
那么(c-c2)/(c1-c)=m1/m2
倒水、加水问题:关键是分析溶质与溶剂的变化
例如:一瓶浓度为20%的消毒水到出2/5后加满清水,再倒出2/5后加满清水,那么现在浓度是多少
答:每一次稀释,溶质都比原来减少2/5,溶液的量不变,因此浓度=20%*(3/5)*(3/5)=7.2%
2.8 排列组合问题
、
计算方法,其中A考虑顺序,C不考虑顺序,要分清
(其实就是从m开始乘以n个递减1的数)
(其实就是全排列除以这n个数的排列顺序)
(1)指定位置型:先固定位置、再安排其他的
(2)相邻问题型:捆绑元素
(3)不相邻问题:先安排其他的,再进行插空
(4)顺序固定型:相对顺序不变,先全排列,再除以这几个固定顺序的排列(类似于A与C的区别)
经典模型:
(1)环排列:n个人坐成一圈,排列方式有种
(2)错位重排:n个元素位置重新排列,使每个元素都不在原来的位置上,错位重拍数为,熟记D1=0,D2=1推导出D3=2,D4=9,D5=44
(3)同素分堆:将n个相同的元素分为m个组,每个组至少有一个元素,可是使用插空法,将m-1个板插入到n-1个空中,种方法,(元素无差异时才可以使用这种方法)
例:将30个一样的玩具球放在3个不同颜色的桶里,每桶至少放9个,一共多少个不同的放法?
答:先在每个桶里放8个,还剩下6个,6个用同素分堆法。
2.9 概率问题
easy,不赘述
2.10 容斥问题
(1)两集合容斥:
例如:全班一共32个人,第一次活动26人参加,第二次活动24人参加,两次活动都没参加的是4个,两个活动都参加的是多少?
答:32-4=28(一共参加活动的人)28=26+24-(两个活动都参加的人),两个活动都参加的人=22
(2)三集合容斥:
常用结论:
总数=只属于一个集合的+只属于其中两个集合的+属于三个集合的
总数=三个集合之和-只属于其中两个集合的-2*属于三个集合的
例:问卷调查:参加考试1的63、参加考试2的89、参加考试3的47、全都参加的
(3)多集合容斥极值:
a. 集合之间没有任何交叉时,集合中元素最多
b. 当一个集合包含另一个集合时,这两个集合的元素总数最少
c. A包含a个元素、B包含b个元素.....全体总数为m
的最小值:a+b-m
的最小值:a+b+c-2m
......以此类推
例:小明、小红、小黑参加考试,一共有100道题,小明做对68,小红做对58,小黑做对78,问三人都做对的题至少有几道?
答:最小值=a+b+c-2m=68+58+78-2x100=4道
2.11 数列
等差数列:d为公差
分类 | 公式 | 示例 |
通项公式 | an=a1+(n-1)d | |
对称公式 | am+an=ai+aj(其中m+n=i+j) | |
通向求和 | Sn=na1+(1/2)n(n-1)d | |
中项求和 | Sn=中项*项数 | 中项a3=7,S5=7x5=35 |
平均数求和 | Sn=((首项+末项)/2)*项数 =平均数*项数 | 首项a1=1,末项a6=16,则 S6=((1+16)/2)x6=51 |
等比数列:q为公比
分类 | 公式 | 示例 |
通项公式 | an=a1xq^(n-1) | |
对称公式 | am*an=ai*aj(m+n=i+j) | |
求和公式 | Sn=(an(1-q^n))/1-q(q≠1),若q=1,则Sn=na1 |
2.12 二次函数
(1)ax^2+bx+c=0,若a>0,则f(x)有最小值;若a<0,则f(x)有最大值
(2)x=-b/(2a)时取得最值
(3)对于f(x)=a(x-m)(x-n),则x=m,x=n时,f(x)=0,x=(m+n)/2时取得最值
2.13 和定最值
注意:数据相等的极端情况、或要求数据不相等的情况下考虑数据连续分配的情况
例如:单位订购335本书,3层楼共10个部门,要求每个部门至少15本,每个楼层至少100本,那么发的最多的部门最多发都少本?
答:发的最多的部门可以发多少本书?
要想分得最多,那么该楼层的部门应该最少。假设一层只有1个部门,剩下2个层放9个部门,给每层200本,平均每个部门发200/9≈22.2本,复合15本的要求,再把多余的发给该部门,则该部门最多可以发100+35=135本书。
2.14 日期问题
(1)闰年、平年计算:如果是整百年数,能够整除400则为闰年;若不是整百年数,能够整除4则为闰年;否则为平年
(2)性质:闰年有366天,平年有365天;每过一个闰年,星期数就会+2,每过一个平年,星期数就会+1
例:2019.1.12是周六,2040.1.12是周几?
答:2019-2040,共经过5个闰年,16个平年。5x2+16x1=26,26/7=3……5,周六后5天为周四。因此2040.1.12为周四
例:某人连续打工24天,赚190元(日工资10元,周六半天,周天休息),已知他从1月下旬开始打工,这个月的1号为周日,问打工结束那一天是2月几号?
答:10x5+5=55,一周可以挣55元,190/55=3……25,即打工了3个星期零3天,且打工的第一天是周四,因为这个月1号是周日,所以这个月周四分别是5号、12号、19号、26号;因为是1月下旬开始,所以是26号开始,3个星期零3天,正好2月18号
2.15 年龄问题
一个原则:年龄差不变
例:小张像小刘这么大的时候23岁,小刘像小张这么大的时候32岁,问俩人现在多大?
答:小刘和23岁差x,小张和32岁差x,小张和小刘差x,那么x=(32-23)/3=3,小刘:23+3=26,小张:26+3=29
2.16 时钟问题
(1)角度差问题:时针每分钟转0.5°,分针每分钟转6°
例:现在4点13(7/13)分,此时时针和分针的角度差为多少?
4点过后,时针和分针差13(7/13)*(6-0.5)°=75°
4点时,角度为120°,现在角度差为120-75=45°
(2)坏钟问题:主要是比例,坏钟时间与标准时间的比例关系
例:一个时钟每小时慢4分钟,早晨6点对准后,晚上该指针指向8:00,保证时间为多少?
答:56:60=14:实际时间,实际过了15个小时,因此标准时间是21:00
(3)周期循环
从头开始找周期循环就可以了
(4)盈亏:对象数=盈亏差/分配差
问题类型 | 公式 |
一盈一尽 | 盈数/两次分配的个数差=对象数 |
一亏一尽 | 亏数/两次分配的个数差=对象数 |
一盈一亏 | (盈数+亏数)/两次分配的个数差=对象数 |
两盈 | (大盈数-小盈数)/两次分配的个数差=对象数 |
两亏 | (大亏数-小亏数)/两次分配的个数差=对象数 |
例:小明、小红去买笔。小明带的钱全买铅笔,则可买5只,剩余4元;买7只铅笔,差2元。小红带的钱全买钢笔,则可买6只,剩余2元;买10只铅笔,差18元。则铅笔和钢笔各多钱?
答:铅笔=(4+2)/(7-5)=3元/只;钢笔=(2+18)/(10-6)=5元/只
2.17 鸡兔同笼
一共n个头,m个脚,问多少鸡多少兔?
答:假设全部为鸡,则2n个脚,(m-2n)/2个兔,n-(m-2n)/2个鸡
2.18 植树问题
类型 | 公式 |
两端都有树,且不封闭 | 棵树=总距离/间距+1 |
一端都有树,且不封闭 | 棵树=总距离/间距 |
封闭路段 | 棵树=总距离/间距 |
两端都有没树,且不封闭 | 棵树=总距离/间距-1 |
2.19 方阵问题
实心方阵:
(1)从外到里,每一层边数-2,总人数-8;特殊的,当最外边数为奇数时,倒数两层为1,8,少7
(2)方阵总人数=最外层边数的平方
空心方阵:
(1)总人数=最外边的平方-(最内层边数-2)的平方
3. 逻辑运算
体量:普遍10-20道
题型:数字推理、图形推理、逻辑判断
3.1 数字推理
等差数列 | 等比数列 | 和数列 | 积数列 | 多次方数列 | 分式数列 | |
基本形式 | 等差数列;一、二、三级等差 | 等比数列;一二、三级等差 | 两项和;三项和 | 两项积;三项积 | 平方数列:数列逐项可以改成平方数 立方数列:...可以改成立方数 | 难点在于对分式的改写 |
变式 | 作差得到其他数列;包含减法运算的递推数列 | 作商得到其他基本数列;前一项倍数+常数=后一项 | 作和后得到其他数列;乘常数或加减常数 | 两项积+常数=第三项 | (1)多次方数+-常数(5以内) (2)多次方数x常数 (3)第一个项的多少次方+-第二项=第三项 | (1)以递增数列为主 (2)以等差数列,等比数列,简单变形为主 |
特征 | 1.数项特征不明显,还有0和质数2.单调增减、增减交替 | 1.数项有良好的整除性2.递增递减趋势明显,会出现先增后减的情况3.递推数列可以大致估算来反推规律 | 1.数项偏小 2.整体趋势不明显,增减杂乱 3.递推规律宜从大数入手构造 | 1.两项积数列明显表现为1,A,A... 2.递增递减趋势明显 | 1.单调递增的多次方数列增幅明显,集中体现在选项数字大 2.一般一个数列中有3项是不加变化的多次方数就可以直接锁定3.一般常数+-5以内 | 1.数项是分数 2.分子分母分别变化;分子分母交替变化;分子分母依次变化 |
组合数列:
(1)奇偶项(2)数位
流程:
(1)先观察数项:1,A,A=>积数列;分数=>分式数列;数项均为多位数=>数项;看平方,立方加减法=>多次方数列;
(2)再观察趋势:增减交替=>等差/奇偶;增减趋势明显=>积数列/等比数列,趋势明显,先增后减=>等比;趋势不明,增减混乱=>和数列/分组。
其实趋势明显也有可能是因为二级是等比/多级数列,所以最好还是直接做差,作商吧
注意质数列为:2,3,5,7,11,13...
3.1.1 图形推理中的数字推理
圆形:
(1)不带中心数字:每个圆都是独立的,每个数字都用得到。通过四等分圆对应的四个数字,找到四个数字之间存在的运算关系,求出?的值是多少(tips:可以看前面几个圆其他位置上的数字怎么计算可以得出?对应位置上的数字)
(2)带中心数字:四周的数字通过简单运算得到中心的数字
三角形:
带中心数字的圆形的简化版,三角的数字经过简单运算得到中间的数字
表格:
一般是行间、列间和整体间的关系
数字推理总结:
(1)图形推理是数字推理的一种形式,指周围几个数字通过何种计算得到中间的数字;如果没有的话,要注意四块一定有一些逻辑关系
(2)表格的数相对来说比较复杂,因为可能是行的关系也可能是列的关系
(3)当不知道是什么关系的时候,可以考虑最大的部分当作结果试试
判断步骤:
(1)先观察数项:1,A,A=>积数列;分数=>分式数列;数项均为多位数=>数项;看平方,立方加减法=>多次方数列;含0肯定不是等比,考虑等差或者多次方-1。
(2)作商做差找规律,一般不会太难,要么x/+-常数,要么x/+-前后两项
(3)注意:质数列为:2,3,5,7,11,13...
3.2 图形推理
3.2.1 图形构成
(1)点:交点、切点、接触点
(2)线:直线、曲线、笔画数
特别的-笔画数:
a.奇点:对于一个连通的图形,所有线条之间的交点(及端点)中连接线条数量为奇数的点就是奇点
b.如果奇数为0或2,图形可以一笔画出
c.如果奇数不为0也不为2,那么笔画=奇数/2
d.汉字与字母除外,直接用书写习惯来计算即可
(3)角
a.是否都含有直角
b.角的个数存在的数量关系
(4)面
a. 立体图形:面的个数相等或形成等差数列
b. 平面图形:封闭区域的个数
(5)部分
部分:图形中不相连部分的个数
部分相等或呈现一定的数量关系
(6)种类
包含种类数,多种元素之间的数量关系,数量换算等
(7)结构
几个部分之间的相对位置关系
上下结构、左右结构、相接、相切等
元素在位置中的特殊关系等
3.2.2 几何性质
(1)对称性(轴对称、中心对称)
(2)重心:考察重心的位置在图形的上部、中部还是下部
(3)面积体积:有相同的阴影或阴影的面积相同或比例相同
3.2.3 图形转化
(1)各图形中的元素形状大小都相同,只是位置不同,优先考虑移动,旋转,翻转,或者间隔的空格数
(2)图形叠加
(3)空间折叠
3.2.4 其他形式
(1)图形重组:线条重组、片块重组,几个部分形成一个图片,主要看图形中的特殊部位
(2)图形求异:找出不同的图片,主要看构成和几何性质
(3)三视图
3.2.5 总结
(1)规律:点、线、封闭区域、角、部分、种类、结构、对称性等,立体图形:三视图
(2)转化:各图形一样
(3)重组:特殊部位
(4)求异:结构、对称
3.3 逻辑判断
题型:命题推理(有时间了再看一看)、
削弱/加强观点:观点>论据,直接>间接
总结/评价观点、定义判断:关键在于对题目文字的理解
类比推理:()对(),相当于()对()
a. 包含/交叉/并列
b. 近义/反义
c. 事物/人/作品相关
d.因果/顺承/目的/充要
图形推理总结:
点 线 笔画 角 面 对称 封闭区域 部分 位置关系 图形叠加 图形遍历与渐变 (1)十字交叉点
(2)T字交叉点
(3)切点
(4)接触点
(1)直曲线构成
(2)直线条数、曲线条数
(3)线条总数
(1)是否可以一笔画出 (1)角的类型
(2)角的数量
(1)面积关系
(2)立体图形考察面的个数
(1)对称方式
(2)对称轴数量
(1)封闭区域的个数
(2)封闭区域的连接方式
(3)排除干扰选项(比如只看直线构成的封闭区域等)
(1)部分个数
(2)部分种类
(3)可能涉及换算问题(难)
(1)移动、旋转、翻转
(2)相对位置:结构、排列、平行垂直、相交相切相离
(3)
一般看黑白块叠加的规则 (1)遍历:全部要出现一次
(2)渐变:相邻的图形之间有相同项
4. 思维策略
题量:10-15
题型:算式求值、解不定方程、智力推理、极限思想
4.1 算式求值
(1)凑整(凑成整一、整十、整百再计算),拆分(把一个数写成两个数的和与差)
(2)提取公因数
(3)分数列项:1/m*n=1/(m-n) * (1/m-1/n)
(4)整体代换:各项中如果含有相同的部分,则将相同的部分用字母表示,从而简化计算
(5)利用整除的传递性(42能被14整除,14能被7整除,所以42能被7整除)、可加减性(30能被3整除,18能被3整除,所以30+18=48能被3整除,30-18=12也能被3整除)来判断。计算量大、一般为乘除,通过是否被特殊值整除来判断结果
(6)尾数法:尾数不同、计算量大、一般为加减,可只计算尾数
(7)常用公式:平方差公式及其逆运算
4.2 解不等式
一个方程两个未知数
(1)互质性
例:本月比上个月少买5包A4和6包B5,共节省了197元,且每包A4比B5贵2元,本月用于买A4和B5的费用相同,那么本月用于购买纸张的费用至少为多少元?
答:设A4每包x元,B5每包x-2元,5x+6(x-2)=11x-12=197,得x=19,即A4每包19元,B5每包17元。且19m=17n,即至少买17包A4与19包B5,17x19+19x17=17x19x2=646元
(2)同余特性
A、B除以m的余数为a,b那么;
例:五子棋比赛,赢一局小组计分为3分,平一局计分为1分,输一局小组计分为0。如果一个小组下了14局五子棋,积分是19分,那么小组可能平了多少局?
A.2 B.6 C.8 D.10
答:3x+y=19,x+y+z=14,3x除以3余0,19除以3余1,那么x除以3应余1-0=1,代入可知D
4.3 智力推理
(1)条件推理
例:三人擂台赛,小明19局,小红29局,小花裁判7局,共举行多少局?
答:19+29-7=41局
(2)操作推理
例:5和30的砝码,将其均分为3份,最少使用砝码多少次?
答:第一次:先分为165和135,第二次:135分为35和100,将35加入165中,第三次:均分200
(3)综合推理
例:甲乙玩沙盘,共50块,每次可划1-5个区域,谁画最后一个区域谁赢,那么甲先划,如何保证自己一定赢?
答:甲划完看乙划,每次乙划x,甲就划6-x,一轮总划6个,50/6=8...2,因此甲一开始划2个,后面按照这个规则划肯定赢
4.4 极限推理
(1)均值不等式
(a1+a2+an)/n >= 根号n:(a1a2an)
(2)抽屉原理
若有n个笼子和mn+1个鸽子,所有的鸽子都被关在笼子里,至少有一个笼子至少有m+1个鸽子
例:20个运动员参加长跑,参赛号码为1、2、3.....20,至少从中选中多少个参赛号码,才能保证至少有两个号码的差是13的倍数?
答:差是13的倍数有:{1,14}、{2,15}、{3,16}、{4,17}、{5,18}、{6,19}、{7,20}共7组,还剩8,9,10,11,12,13等6个数,那么需要构造7+6=13个抽屉,取14个号码,必定能保证其中两个号码相差为13的倍数
(3)最不利原则
保证数=最不利数+1
例:软件90人,市场80人,财务20,人力资源管理16人找工作,至少多少人找到工作能保证其中30名专业相同?
最坏的情况:20+16+29+29+1=95人
5.资料分析
5.1 百分比
注意用词:增加了a%,增加为a%,X占A的a%,X超Aa%=X比A增加了a%
增长了:增长量/基期量
且材料会有很多干扰信息
5.2 增长量
增长量=现期量-基期量
(1)同比:2019年6月对2018年6月
(2)环比:2019年6月对2019年5月,2019年1-6月对2018年7-12月
同比/环比增长量=现期量-基期量=基期量x增长率=(现期/(1+增长率)x 增长率=现期-(现期/(1+增长率))
平均增长量(最常见的年均增长量)=(末期值-初期值)/ 时间差
主要看材料能否读懂:例如主体数->个体数
5.3 增长率
(1)同比/环比增长率=增长量/基期数x100%=(现期数-基期数)/基期数 x 100%=增长量/(现期数-增长量)x100%=(现期数/基期数-1)x 100%
快速计算的估值技巧
(2)年均增长率=根号下年份差:(末期值/初期值)-1
常用特征数:
1.1^2=1.21,1.1^3=1.33,1.1^4=1.46,1.1^5=1.61,1.1^6=1.77,1.1^7=1.95,1.1^8=2.14,1.1^9=2.36,1.1^10=2.59,1.2^2=1.44,1.2^3=1.73,1.2^4=2.07,1.2^5=2.49,1.6^2=2.56,1.7^2=2.89,1.8^2=3.24,1.9^2=3.61
(3)隔年增长率
假设第N年指标为A,同比增长m%,增速同比增加n个百分点,则:
第(N-1)年指标为A/(1+m%),增速(m-n)%;
第(N-2)年指标为(A/(1+m%))/ 1+(m-n)%,隔年增速(N-2年相较于N年)为(1+m%)(1+m%-n%)-1
注意:如果增长率是负的,那么增长率就为-n个百分点
(4)混合增长率
某一总量的两个分量分别为A1、A2,比基期分别增长x%,y%,总量变化为z%
当x=y时,x=y=z;
当x>y,若A1/(1+x%)> A2/(1+y%),z偏向x,为(x+y)/2 ~x;若A1/(1+x%)< A2/(1+y%),z偏向y,位于y~(x+y)/2;
当x<y,若A1/(1+x%)> A2/(1+y%),z偏向x,为 x~(x+y)/2;若A1/(1+x%)< A2/(1+y%),z偏向y,位于(x+y)/2~y;
技巧:z位于平均值与占比(A1/(1+x%)与A2/(1+y%))比较大的部分
5.4 比重
(1)即百分比
技巧:有时只需要计算一位即可,要多观察选项的特殊
(2)基期比重
现期总量A,增长率a%,分量为B,增长率b%
基期比重=基期分量/基期总量=(B/(1+b%))/ (A/(1+a%))=(B/A)((1+a%)/(1+b%))
现期比重较基期比重的变化=现期比重-基期比重=B/A-(B/A)*((1+a%)/(1+b%))=(B/A)*((b%-a%)/(1+b%))
结论:b%>a%,则上升;b%<a%,则下降
5.5 平均数
(1)平均数=总量/总数
(2)基期平均数
现期总量A,增长率a%,总数为B,增长率b%
基期平均数=(A/(1+a%))/(B/(1+b%))=(A/B)((1+b%)/(1+a%))
平均数增长量=现期平均数-基期平均数=(A/B)((a%-b%)/(1+a%))
平均数增长率=(a%-b%)/(1+b%)
结论:a>b,平均数增长;a<b,平均数下降
技巧:主要分清哪里是总数,哪里是总量,哪个是a,哪个是b
5.5 倍数与翻番
(1)倍数是比例
(2)翻番是2^n
(3)多几倍与是几倍的区别
(4)基数倍数与增长量倍数
已知现期量比基期量增加x,增长了y倍
现期量-基期量=x,(现期量-基期量)/基期量=y,那么基期量=x/y
已知两指标现期量a、b分别比基期增长x%,y%:
基期倍数=(a/b)((1+y%)/(1+x%))
增长率倍数=((ax%)/(by%))((1+y%)/(1+x%))
5.6 指数
指数有特殊含义
现期实际值/基期实际值 = 指数/100
指标增长率=(指数-100)%
指数>100,现期量>基期量,增长
以此类推.....
指数与增长率、倍数的关系
(1)指数之差=增长率之差x100
(2)指数=倍数x100
5.7 拉动....增长、贡献率、利润率
拉动...增长x个百分点=分量增长量/总量的基期量x100
贡献率=分量的增长量/总量的增长量x100%
利润率(成本利润率)=销售利润总额/成本x100%
主营业务利润率=利润总额/主营业务收入x100%
销售利润率=销售利润总额/销售总收入x100%
产值利润率=销售利润总额/总产值x100%
成本利润率=销售利润总额/成本x100%
5.8 进出口额、贸易顺差、贸易逆差
进出口总额=进口额+出口额
当进口额<出口额,贸易顺差,顺差额=出口额-进口额
当进口额>出口额,贸易逆差,逆差额=进口额-出口额
5.9 出生率、死亡率、人口自然增长率
5.10 资料分析技巧
(1)首数法
适用:a/b,a-b,a+b型,选项中前两位数字不同
注:a/b型,一般分子不变,分母保留三位有效数字
(2)尾数法
适用:a-b,a+b型,选项中尾数/末两项不同
(3)有效数字法
有效数字:从最左边第一个不是0的数字算起,四舍五入,取几位有效数字
选项之间的最小差距>10%,取两位
最小差距<10%,取三位
减除同向取舍(列项数字要增大都增大),加乘反向取舍(列项数字一个增大一个减小)
(4)特征数字法(百分数、分数转化)
使用:a/(1+x%)、a/(1+x%)*x%、a/(1+x%)*y%
11.1%=1/9,12.5%=1/8,14.3%=1/7,16.7%=1/6,20%=1/5,25%=1/4,33.3%=1/3,50%=1/2
x%可以是约等于从而估算,选择选项中相近的即可
(4)乘除转换
适用:b/(1+x%),当|x%|<5%时,可以转换为b(1-x%),原理为平方差公式
(5)同位比较法
适用:a/b、axb的大小,axb可以转换为a/c进行比较
注意:分子小分母大 < 分子大分母小
(6)差分法
比较:a/b与c/d的大小
比较原则:
a-c/c-d=c/d,a/b=c/d
a-c/c-d>c/d,a/b>c/d
a-c/c-d<c/d,a/b<c/d